Geodynamic significance of a buried transient Carboniferous landscape

Author:

McNab Fergus12,White Nicky1

Affiliation:

1. Bullard Laboratories, Department of Earth Sciences, University of Cambridge, Madingley Rise, Madingley Road, Cambridge CB3 0EZ, UK

2. Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum (GFZ), Telegrafenberg, 14473 Potsdam, Germany

Abstract

It is increasingly clear that present-day dynamic topography on Earth, which is generated and maintained by mantle convective processes, varies on timescales and length scales on the order of 1−10 m.y. and 103 km, respectively. A significant implication of this behavior is that Phanerozoic stratigraphic records should contain indirect evidence of these processes. Here, we describe and analyze a well-exposed example of an ancient landscape from the Grand Canyon region of western North America that appears to preserve a transient response to mantle processes. The Surprise Canyon Formation lies close to the Mississippian-Pennsylvanian boundary and crops out as a series of discontinuous lenses and patches that are interpreted as remnants of a westward-draining network of paleovalleys and paleochannels within a coastal embayment. This drainage network is incised into the marine Redwall Limestone whose irregular and karstified upper surface contains many caves and collapse structures. The Surprise Canyon Formation itself consists of coarse imbricated conglomerates, terrestrial plant impressions including Lepidodendron, and marine invertebrate fossils. It is overlain by marine, fluvial, and aeolian deposits of the Supai Group. These stratal relationships are indicative of a transient base-level fall whose amplitude and regional extent are recognized as being inconsistent with glacio-eustatic sea-level variation. We propose that this transient event is caused by emplacement and decay of a temperature anomaly within an asthenospheric channel located beneath the lithospheric plate. An analytical model is developed that accounts for the average regional uplift associated with landscape development and its rapid tectonic subsidence. This model suggests that emplacement and decay of a ∼50 °C temperature anomaly within a channel that is 150 ± 50 km thick can account for the observed vertical displacements. Our results are corroborated by detrital zircon studies that support wholesale drainage reorganization at this time and by stratigraphic evidence for spatially variable regional epeirogeny. They are also consistent with an emerging understanding of the temporal and spatial evolution of the lithosphere-asthenosphere boundary.

Publisher

Geological Society of America

Subject

Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3