What’s in an age? Calculation and interpretation of ages and durations from U-Pb zircon geochronology of igneous rocks

Author:

Klein Benjamin Z.1,Eddy Michael P.2

Affiliation:

1. 1Institut des Sciences de la Terre, Université de Lausanne, Géopolis, CH-1015 Lausanne, Switzerland

2. 2Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana 47907, USA

Abstract

Accurate assessment of the duration of zircon crystallization within igneous rocks is critical for constraining the time scales of magmatic evolution and storage, which have important implications for our understanding of magmatic fluxes and volcanic hazards. However, estimation of crystallization durations from finite geochronologic data sets is difficult and typically relies on numerous implicit assumptions. In this contribution, we evaluate these assumptions and provide recommendations for better interpretation of crystallization durations from individual samples by developing a simplified theoretical framework to relate zircon growth, nucleation, and armoring rates to zircon ages. We first investigate single zircon analyses and show that ages produced with methods that integrate the entire grain or grain fragments (e.g., chemical abrasion−isotope dilution−thermal ionization mass spectrometry [CA-ID-TIMS]) are inevitably biased toward the second half of the zircon growth interval, while subsampling of grains via microbeam approaches will only capture the majority of the zircon crystallization duration when the microbeam spot size is less than ∼25% of the zircon minor axis, and the analytical uncertainty of the measurement is less than ∼20% of the duration over which the individual zircon grew. We subsequently investigate the distribution of zircon mean ages produced through various combinations of zircon growth rate, nucleation rate, and the probability of zircon being armored by major phases. We show that zircon age distributions cannot be directly predicted from the rate of zircon mass crystallized, as many combinations of growth, nucleation, and armoring rates result in distinct age distributions, yet they produce nearly identical mass crystallization rates. Finally, we develop two equations that can be used to constrain the duration of crystallization observed within individual samples. In scenarios where the observed age dispersion is consistent with the reported analytical uncertainties, the first equation can be used to estimate the maximum duration. Otherwise, when the measured zircon population is overdispersed, a second equation constrains the minimum duration of zircon crystallization.

Publisher

Geological Society of America

Subject

Geology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3