From fault creep to slow and fast earthquakes in carbonates

Author:

Passelègue Franҫois X.12,Aubry Jérôme3,Nicolas Aurélien3,Fondriest Michele2,Deldicque Damien3,Schubnel Alexandre3,Di Toro Giulio24

Affiliation:

1. Laboratory of Experimental Rock Mechanics, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland

2. School of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9QQ, UK

3. UMR8538, Ecole Normale Supérieure, 75231 Paris Cedex 5, France

4. Dipartimento di Geoscienze, Università degli Studi di Padova, 35131 Padua, Italy

Abstract

Abstract A major part of the seismicity striking the Mediterranean area and other regions worldwide is hosted in carbonate rocks. Recent examples are the destructive earthquakes of L’Aquila (Mw 6.1) in 2009 and Norcia (Mw 6.5) in 2016 in central Italy. Surprisingly, within this region, fast (≈3 km/s) and destructive seismic ruptures coexist with slow (≤10 m/s) and nondestructive rupture phenomena. Despite its relevance for seismic hazard studies, the transition from fault creep to slow and fast seismic rupture propagation is still poorly constrained by seismological and laboratory observations. Here, we reproduced in the laboratory the complete spectrum of natural faulting on samples of dolostones representative of the seismogenic layer in the region. The transitions from fault creep to slow ruptures and from slow to fast ruptures were obtained by increasing both confining pressure (P) and temperature (T) up to conditions encountered at 3–5 km depth (i.e., P = 100 MPa and T = 100 °C), which corresponds to the hypocentral location of slow earthquake swarms and the onset of seismicity in central Italy. The transition from slow to fast rupture is explained by an increase in the ambient temperature, which enhances the elastic loading stiffness of the fault, i.e., the slip velocities during nucleation, allowing flash weakening and, in turn, the propagation of fast ruptures radiating intense high-frequency seismic waves.

Publisher

Geological Society of America

Subject

Geology

Reference35 articles.

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3