Thermochronological transect across the Basin and Range/Rio Grande rift transition: Contrasting cooling histories in contiguous extensional provinces

Author:

Gavel Michelle M.1,Amato Jeffrey M.1ORCID,Ricketts Jason W.2,Kelley Shari3,Biddle Julian M.2,Delfin Rafael A.2

Affiliation:

1. Department of Geological Sciences, New Mexico State University, Las Cruces, New Mexico 88003, USA

2. Department of Earth, Environmental and Resource Sciences, University of Texas at El Paso, El Paso, Texas 79968, USA

3. New Mexico Bureau of Geology and Mineral Resources, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, USA

Abstract

Abstract The Basin and Range and Rio Grande rift (RGR) are regions of crustal extension in southwestern North America that developed after Laramide-age shortening, but it has not been clear whether onset and duration of extension in these contiguous extensional provinces were the same. We conducted a study of exhumation of fault blocks along a transect from the southeastern Basin and Range to across the RGR in southern New Mexico. A suite of 128 apatite and 63 zircon (U-Th)/He dates (AHe and ZHe), as well as 27 apatite fission-track (AFT) dates, was collected to investigate the cooling and exhumation histories of this region. Collectively, AHe dates range from 3 to 46 Ma, ZHe dates range from 2 to 288 Ma, and AFT dates range from 10 to 34 Ma with average track lengths of 10.8–14.1 µm. First-order spatiotemporal trends in the combined data set suggest that Basin and Range extension was either contemporaneous with Eocene–Oligocene Mogollon-Datil volcanism or occurred before volcanism ended ca. 28 Ma, as shown by trends in ZHe data that suggest reheating to above 240 °C at that time. AHe and ZHe dates from the southern RGR represent a wider range in dates that suggest the main phase of cooling occurred after 25 Ma, and these blocks were not reheated after exhumation. Time-temperature models created by combining AHe, AFT, and ZHe data in the modeling software HeFTy were used to interpret patterns in cooling rate across the study area and further constrain magmatic and/or volcanic versus faulting related cooling. The Chiricahua Mountains and Burro Mountains have an onset of rapid extension, defined as cooling rates in excess of >15 °C/m.y., at ca. 29–17 Ma. In the Cookes Range, a period of rapid extension occurred at ca. 19–7 Ma. In the San Andres Mountains, Franklin Mountains, Caballo Mountains, and Fra Cristobal range, rapid extension occurred from ca. 23 to 9 Ma. Measured average track lengths are longer in Rio Grande rift samples, and ZHe dates of >40 Ma are mostly present east of the Cookes Range, suggesting different levels of exhumation for the zircon partial retention zone and the AFT partial annealing zone. The main phase of fault-block uplift in the southern RGR occurred ca. 25–7 Ma, similar to what has been documented in the northern and central sections of the rift. Although rapid cooling occurred throughout southern New Mexico, thermochronological data from this study with magmatic and volcanic ages suggest rapid cooling was coeval with magmatism in the Basin and Range, whereas in the Rio Grande rift cooling occurred during an amagmatic gap. These observations support a model where an early phase of extension was facilitated by widespread ignimbrite magmatism in the southeastern Basin and Range, whereas in the southern Rio Grande rift, extension started later and continues today and may have occurred between local episodes of basaltic magmatism. These differences in cooling history make the Rio Grande rift tectonically distinct from the Basin and Range. We infer based on geologic and thermochronological evidence that the onset of extension in the southern Rio Grande rift occurred at ca. 27–25 Ma, significantly later than earlier estimates of ca. 35 Ma.

Publisher

Geological Society of America

Subject

Stratigraphy,Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3