Peak-ring magnetism: Rock and mineral magnetic properties of the Chicxulub impact crater

Author:

Mendes Bruno Daniel Leite1,Kontny Agnes1,Poelchau Michael2,Fischer Lennart A.2,Gaus Ksenia1,Dudzisz Katarzyna3,Kuipers Bonny W.M.4,Dekkers Mark J.5

Affiliation:

1. 1Institute of Applied Geosciences—Structural Geology and Tectonics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany

2. 2General Geology and Structural Geology, Albert Ludwig University of Freiburg, 79085 Freiburg, Germany

3. 3Institute of Geophysics, Polish Academy of Sciences, PL01452 Warsaw, Poland

4. 4Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, Netherlands

5. 5Paleomagnetic Laboratory Fort Hoofddijk, Department of Earth Sciences, Utrecht University, 3584 CD Utrecht, Netherlands

Abstract

The Chicxulub impact event at ca. 66 Ma left in its wake the only complex crater on Earth with a preserved peak ring, characterized by a well-developed magnetic anomaly low. To date, little is known about its magnetic properties. The joint Integrated Ocean Drilling Program (IODP) and International Continental Scientific Drilling Program (ICDP) Expedition 364 drill core M0077A revealed that the peak ring consists of uplifted and strongly deformed granitoid basement rocks overlain by a 130-m-thick impact melt and suevite layer. Pre- and postimpact hydrothermal systems affected this basement with maximum temperatures up to 450 °C. We used microscopy, mineral chemistry, temperature-dependent magnetic susceptibility, and hysteresis properties to characterize the magnetic mineralogy of pre-, syn-, and postimpact rocks. Compared to its amount of pure, stoichiometric shocked magnetite, the granitoid basement shows low magnetic susceptibility, which is in line with earlier experimental studies indicating that shock reduces magnetic susceptibility. Cation-substituted magnetite with varying compositions in the melt rocks carries a higher induced and remanent magnetization compared to the basement. In the granitoid basement, magnetite was partially oxidized to hematite by a pre-impact hydrothermal event, but at lithological contacts with high-temperature impact melt rock, this hematite was locally retransformed back to magnetite. Elsewhere in the granitoid basement, the temperature reached in the hydrothermal system was too low for hematite retransformation. It was also too low to anneal all the lattice defects in the shocked magnetite, which likely occurs above 540 °C. The presence of shocked magnetite in the granitoid basement well explains the magnetic anomaly low due to its unusually low induced magnetization.

Publisher

Geological Society of America

Subject

Geology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3