Drainage initiation, expansion, and channel-head arrest in heterogenous bedrock landscapes of the Colorado Plateau

Author:

Steelquist A.T.1,Lapôtre M.G.A.1,Hilley G.E.1

Affiliation:

1. 1Department of Geological Sciences, Stanford University, 450 Jane Stanford Way, Building 320, Stanford, California 94305, USA

Abstract

The transition between hillslopes and channels defines landscape characteristics such as drainage density, ridge spacing, and hillslope length. Previous studies of the location of this transition have demonstrated that soil advection and diffusion work either individually or in concert to set the limits of channelization in largely soil-mantled landscapes. However, no such model explaining the limits of channelization in bedrock landscapes has been established. In this study, we explore the morphologic signatures and processes of channel initiation, headward elongation, and eventual arrest in the bedrock landscape of the Raplee Ridge monocline, Utah, USA. The monocline provides an opportunity to test whether a threshold shear stress controls the initiation of channels through inspection of slope and upstream drainage area at varyingly incised portions of the landscape. Using a combination of lidar and structure-from-motion data, we find that incised and unincised channels occupy overlapping but separable portions of slope-upstream area space, while geomorphic mapping and field-based observations allow for further distinction between erosional processes with threshold shear stress values that range from ∼60 Pa to 160 Pa. We develop a conceptual model of the initiation and expansion of these bedrock channels using field observations, in which channels first initiate by vertical plucking of blocks, disaggregate limestone by block sliding, elongate upslope by knickpoint retreat in variably erosive lithologies, and eventually arrest at predictable landscape positions due to block buttressing. These results suggest that shear stress-controlled processes play a fundamental role in setting the degree of channelization in bedrock landscapes; however, the thresholds for channel erosion can change in response to local geologic factors such as lithology and structural geometry. This implies that detailed geologic knowledge may be necessary for the interpretation and modeling of fluvial channels in terrestrial bedrock landscapes and those on other planets.

Publisher

Geological Society of America

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3