Compositions and ages of Early Cretaceous volcanic and plutonic rocks in central Tibet: Insights into the magmatic and uplift response to slab breakoff

Author:

Wu Hao12ORCID,Liu Fei1,Liu Xi-Jun1,Wu Yan-Wang3,Li Cai2,Yang Rui1

Affiliation:

1. 1Guangxi Key Laboratory of Hidden Metallic Ore Deposits, Exploration & Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources of Guangxi, Guilin University of Technology, Guilin 541006, China

2. 2College of Earth Sciences, Jilin University, Changchun 130061, China

3. 3School of Geology and Geomatics, Tianjin Chengjian University, Tianjin 300384, China

Abstract

AbstractWe present new zircon U-Pb ages and Hf isotope compositions as well as whole-rock major- and trace-element geochemical and Sr-Nd isotopic data for silicic plutonic and volcanic rocks from the Duolong area of central Tibet. Combined with existing data, our new data indicate that these plutonic and volcanic rocks were formed in two stages ca. 120 Ma and ca. 110 Ma, respectively, in a postcollisional extensional setting that was triggered by slab breakoff. The similar geochemical compositions of granitoids and rhyolites, combined with their close spatial and temporal relationships, suggest that they were both derived from juvenile crustal material within a single magmatic system. We propose that the two inferred crustal melting events in the Duolong area were caused by two episodes of deep mantle activity triggered by the transition of the plate subduction angle from steep to shallow in response to the ascent of buoyant continental lithosphere during slab breakoff. Furthermore, rapid surface uplift during the late Early Cretaceous caused by slab breakoff made an important contribution to the formation of the proto–Tibetan Plateau. This study provides new insights into postcollisional tectonomagmatism and plateau uplift in central Tibet triggered by slab breakoff. We propose more generally that tectonic uplift during postcollisional processes (i.e., slab breakoff and lithospheric delamination) is a major contributor to plateau uplift in collision zones.

Publisher

Geological Society of America

Subject

Stratigraphy,Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3