Insights from the geological record of deformation along the subduction interface at depths of seismogenesis

Author:

Fisher Donald M.1ORCID,Hooker John N.1,Smye Andrew J.1,Chen Tsai-Wei1

Affiliation:

1. Department of Geoscience, Pennsylvania State University, University Park, Pennsylvania 16801, USA

Abstract

Abstract Subduction interfaces are loci of interdependent seismic slip behavior, fluid flow, and mineral redistribution. Mineral redistribution leads to coupling between fluid flow and slip behavior through decreases in porosity/permeability and increases in cohesion during the interseismic period. We investigate this system from the perspective of ancient accretionary complexes with regional zones of mélange that record noncoaxial strain during underthrusting adjacent to the subduction interface. Deformation of weak mudstones is accompanied by low-grade metamorphic reactions, dissolution along scaly microfaults, and the removal of fluid-mobile chemical components, whereas stronger sandstone blocks preserve veins that contain chemical components depleted in mudstones. These observations support local diffusive mass transport from scaly fabrics to veins during interseismic viscous coupling. Underthrusting sediments record a crack porosity that fluctuates due to the interplay of cracking and precipitation. Permanent interseismic deformation involves pressure solution slip, strain hardening, and the development of new shears in undeformed material. In contrast, coseismic slip may be accommodated within observed narrow zones of cataclastic deformation at the top of many mélange terranes. A kinetic model implies interseismic changes in physical properties in less than hundreds of years, and a numerical model that couples an earthquake simulator with a fluid flow system depicts a subduction zone interface governed by feedbacks between fluid production, permeability, hydrofracturing, and aging via mineral precipitation. During an earthquake, interseismic permeability reduction is followed by coseismic rupture of low permeability seals and fluid pressure drop in the seismogenic zone. Updip of the seismogenic zone, there is a post-seismic wave of higher fluid pressure that propagates trenchward.

Publisher

Geological Society of America

Subject

Stratigraphy,Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3