Transformation of eastern North America from compression to extension in the Permian–Triassic

Author:

Ma* Chong1,Hames Willis E.2,Foster David A.3,Xiao Wenjiao4,Mueller Paul A.3,Steltenpohl Mark G.2

Affiliation:

1. Mineral Exploration Research Centre, Harquail School of Earth Sciences, Laurentian University, Sudbury, Ontario P3E 2C6, Canada

2. Department of Geosciences, Auburn University, Auburn, Alabama 36849, USA

3. Department of Geological Sciences, University of Florida, Gainesville, Florida 32611, USA

4. Xinjiang Research Center for Mineral Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China

Abstract

ABSTRACT The record of Permian–Triassic evolution in eastern North America indicates an important change in the tectonic regime from compression to extension as eastern Laurentia transitioned from the Alleghanian orogeny to continental rifting associated with the breakup of Pangea. The temporal pace (e.g., gradual vs. episodic, diachronous vs. synchronous), the accommodating structures, and the influential processes that characterized this transition provide critical insights into the late Paleozoic evolution of Laurentia and rifted continental margins in general. Connections between the formation of the South Georgia basin and regional cooling of the southernmost Appalachian crystalline rocks, along with the distribution of normal faults and discontinuities in metamorphic grade, indicate extensional collapse of the Alleghanian orogen along an extensive detachment system that was active from ca. 295 to 240 Ma. The 40Ar/39Ar cooling ages of biotites from low-angle normal shear zones cutting migmatitic gneisses of the southernmost Appalachians are interpreted to document extensional faulting ca. 280 Ma and to provide a snapshot of the prolonged orogenic collapse. The timing, orientation of structures, extent of reactivation, and character of late Alleghanian extension in the central and northern Appalachians provide an orogen-scale framework for this tectonic transition. This contribution focuses on correlations between the beginning of orogenic collapse and the initiation of continental rifting along with the tectonic processes that transformed eastern North America from a convergent to divergent plate boundary following the Alleghanian orogeny.

Publisher

Geological Society of America

Reference94 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3