Crustal genesis and evolution of the Archean Wyoming Province: Continental growth through vertical magmatic and horizontal tectonic processes

Author:

Mogk* David W.1,Frost Carol D.2,Mueller Paul A.3,Frost B. Ronald2,Henry Darrell J.4

Affiliation:

1. Department of Earth Sciences, Montana State University, Bozeman, Montana 59717, USA

2. Department of Geology and Geophysics, University of Wyoming, Laramie, Wyoming 82071, USA

3. Department of Geological Sciences, University of Florida, Gainesville, Florida 32611, USA

4. Department of Geology and Geophysics, Louisiana State University, Baton Rouge, Louisiana 70803, USA

Abstract

ABSTRACT The Archean Wyoming Province formed and subsequently grew through a combination of magmatic and tectonic processes from ca. 4.0 to 2.5 Ga. Turning points in crustal evolution are recorded in four distinct phases of magmatism: (1) Early mafic magmatism formed a primordial crust between 4.0 and 3.6 Ga and began the formation of a lithospheric keel below the Wyoming Province in response to active plume-like mantle upwelling in a “stagnant lid”–type tectonic environment; (2) earliest sialic crust formed in the Paleoarchean by melting of hydrated mafic crust to produce rocks of the tonalite-trondhjemite-granodiorite (TTG) suite from ca. 3.6 to 2.9 Ga, with a major crust-forming event at 3.3–3.2 Ga that was probably associated with a transition to plate tectonics by ca. 3.5 Ga; (3) extensive calc-alkalic magmatism occurred during the Mesoarchean and Neoarchean (ca. 2.85–2.6 Ga), forming plutons that are compositionally equivalent to modern-day continental arc plutons; and (4) a late stage of crustal differentiation occurred through intracrustal melting processes ca. 2.6–2.4 Ga. Periods of tectonic quiescence are recognized in the development of stable platform supracrustal sequences (e.g., orthoquartzites, pelitic schists, banded iron formation, metabasites, and marbles) between ca. 3.0 and 2.80 Ga. Evidence for late Archean tectonic thickening of the Wyoming Province through horizontal tectonics and lateral accretion was likely associated with processes similar to modern-style convergent-margin plate tectonics. Although the province is surrounded by Paleoproterozoic orogenic zones, no post-Archean penetrative deformation or calc-alkalic magmatism affected the Wyoming Province prior to the Laramide orogeny. Its Archean crustal evolution produced a strong cratonic continental nucleus prior to incorporation within Laurentia. Distinct lithologic suites, isotopic compositions, and ages provide essential reference markers for models of assembly and breakup of the long-lived Laurentian supercontinent.

Publisher

Geological Society of America

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3