Transient tin mineralization from cooling of magmatic fluids in a long-lived system

Author:

Li Yang1,Pan Jun-Yi2,Wu Li-Guang3,He Sheng34,Bachmann Olivier5,Li Xian-Hua3

Affiliation:

1. 1Ministry of Education Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, China

2. 2State Key Laboratory for Mineral Deposits Research, Department of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, Jiangsu, China

3. 3State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

4. 4Beijing Research Institute of Uranium Geology, Beijing 100029, China

5. 5Institute of Geochemistry and Petrology, Department of Earth Sciences, ETH Zürich, Zurich 8092, Switzerland

Abstract

AbstractFertility and longevity of hydrothermal systems are key parameters required to improve our ability in predicting new deposits and directly extracting metals from metalliferous fluids. Reconstructing evolutional trajectories of metalliferous fluids with high temporal resolution is critical for pushing our understanding forward, but this is inevitably challenging because traditional approaches for obtaining this information either have poor temporal resolution and/or bear considerable uncertainties. We present a novel approach (translating texture-controlled information to temporal patterns) to reconstruct the thermal and isotopic history of the Weilasituo vein-type tin deposit (Inner Mongolia, China) at the millennial scale. In situ oxygen isotope thermometry of paragenetically constrained quartz and cassiterite reveals that tin deposition was accompanied by gradual cooling of pure magmatic fluids from ~500 °C to ~390 °C at lithostatic conditions, while fluid mixing and/or water-rock interaction were not required. The system then transitioned to hydrostatic conditions and permitted penetration of meteoric water and further cooling. Aluminum diffusion in quartz chronometry yields time scales of ~50 k.y., ~5 k.y., and ~200 k.y. for pre-, syn-, and post-ore stages, respectively. Our results highlight that the magmatic-hydrothermal system did not form ore minerals for most of its lifetime, with mineralization occurring only briefly (i.e., <5% of its lifetime). Hence, the rates and efficiency of ore formation may need significant revision. For magmatic-hydrothermal systems with felsic magmas being stored at high crystallinity after extensive volatile exsolution, the efficiency of scavenging metals from melts to fluids critically controls their fertility. To directly extract metals from metalliferous fluids, the key is targeting systems with a high degree of magma crystallization (e.g., higher metal contents in fluids) in warm crust (e.g., able to sustain long-lived systems).

Publisher

Geological Society of America

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3