The effects of pre-stress assumptions on dynamic rupture with complex fault geometry in the San Gorgonio Pass, California, region

Author:

Tarnowski Jennifer M.1,Kyriakopoulos Christodoulos2,Oglesby David D.1ORCID,Cooke Michele L.3,Stern Aviel3

Affiliation:

1. 1Department of Earth and Planetary Sciences, University of California, Riverside, 900 University Avenue, Riverside, California 92521, USA

2. 2Center for Earthquake Research and Information, University of Memphis, 3876 Central Avenue, Room 103, Memphis, Tennessee 38152, USA

3. 3Department of Geosciences, University of Massachusetts, Amherst, Massachusetts 01003, USA

Abstract

Abstract We use three-dimensional (3-D) dynamic finite-element models to investigate potential rupture paths of earthquakes propagating along faults through the western San Gorgonio Pass, a structurally complex region along the San Andreas fault system in southern California (USA). We focus on the right-lateral San Bernardino strand of the San Andreas fault system, the oblique thrust–right-lateral San Gorgonio Pass fault zone, and a portion of the right-lateral Garnet Hill strand of the San Andreas fault system. We use the 3-D finite-element method to model rupture propagation along a fault geometry that reflects current understanding of the local geometrical complexity and is consistent with long-term loading and observed surface deformation. We test three different types of pre-stress assumptions: (1) constant tractions (assuming pure right-lateral strike-slip motion on the San Bernardino and Garnet Hill strands and oblique thrust–right-lateral strike-slip motion on the San Gorgonio Pass fault zone), (2) a uniform regional stress regime, and (3) long-term (evolved) stress from quasi-static crustal deformation modeling. Our results imply that under the more realistic regional stress and evolved stress assumptions, throughgoing rupture propagation from the southeast to northwest (i.e., from the Garnet Hill to the San Bernardino strand) may be more likely than throughgoing rupture in the reverse direction (from the San Bernardino to the Garnet Hill strand). The results may have implications for the earthquake potential in the region as well as for ground motion in the Los Angeles Basin. The results also emphasize how fault geometry and stress patterns combine to influence rupture propagation on complex fault systems.

Publisher

Geological Society of America

Subject

Stratigraphy,Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3