Magmatic conditions aiding synconvergent extension above the Peruvian flat slab

Author:

Grambling Tyler A.1ORCID,Jessup Micah J.2,Newell Dennis L.3,Grambling Nadine L.45,Hiett Coleman D.36

Affiliation:

1. 1Geology Department, Colorado College, Colorado Springs, Colorado 80903, USA

2. 2Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, Tennessee 37996, USA

3. 3Department of Geosciences, Utah State University, Logan, Utah 84322, USA

4. 4Department of Earth Sciences, University of Delaware, Newark, Delaware 19716, USA

5. 5Department of Earth, Environmental, and Planetary Science, Brown University, Providence, Rhode Island 02912, USA

6. 6Department of Geosciences, University of Arizona, Tucson, Arizona 85721, USA

Abstract

Abstract The Cordillera Blanca and Cordillera Huayhuash contain some of the highest topography in the Andes and provide insight into tectonomagmatic processes associated with the onset of flat-slab subduction. These adjacent ranges shared a similar history of deformation and exhumation prior to the late Miocene, when synconvergent extension began in the Cordillera Blanca. Magmatism in the Cordillera Huayhuash has been inferred as coeval with magmatism in the Cordillera Blanca. Yet, extension, which has been correlated with magmatic heat flow, is limited to the Cordillera Blanca. New zircon U-Pb dates and trace and rare earth element concentrations from the Cordillera Blanca batholith and the Huayllapa pluton in the Cordillera Huayhuash and reassessment of existing zircon data help to characterize regional magmatic processes prior to the establishment of flat-slab subduction. Two compositionally distinct samples of the Huayllapa pluton yielded mean ages of 24.8 ± 0.4 Ma and 25.4 ± 0.8 Ma. In contrast, the Cordillera Blanca batholith has a protracted crystallization history postdating that of the Cordillera Huayhuash by up to 20 m.y. Miocene magmatism in the Cordillera Blanca began at 19 Ma and ended with injection of large volumes of geochemically distinct, mantle-derived magma from 10 to 5 Ma. We suggest that 6–5 Ma magmatism in the Cordillera Blanca promoted elevated heat flow and reduced shear strength, which facilitated extensional shearing along the western slopes of the range, whereas colder amagmatic crust in the Cordillera Huayhuash inhibited southward propagation of faulting. Our data demonstrate that the linkages between magmatism and elevated heat flow identified in the Cordillera Blanca are important driving processes in initiating extension in cordilleran-style orogenies.

Publisher

Geological Society of America

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3