Fault zone architecture and lithology-dependent deformation mechanisms of the Himalayan frontal fold-thrust belt: Insights from the Nahan Thrust, India

Author:

Sarkar Dyuti Prakash12,Ando Jun-ichi12,Ghosh Gautam23,Das Kaushik12,Dasgupta Prabir4,Tomioka Naotaka25

Affiliation:

1. 1Department of Earth and Planetary Systems Science, Hiroshima University, Higashi Hiroshima 7398526, Japan

2. 2Hiroshima Institute of Plate Convergence Region Research, Hiroshima University, Higashi Hiroshima 7398526, Japan

3. 3Centre for Advanced Study, Department of Geology, Presidency University, Kolkata 700073, India

4. 4Department of Geology, Durgapur Government College, Durgapur 713214, India

5. 5Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology, Nankoku 7838502, Japan

Abstract

Brittle shallow crustal faults typically develop a complex fault zone architecture with distinct structural domains that display diverse microstructures, mineralogy, and deformation mechanisms. The development of such domains is typically controlled by the strength and composition of the protoliths, physical conditions of deformation, fluid ingress, and diachronous fault growth in response to stress accumulation and co-seismic slip. Herein, we studied the microstructure-mineralogy-kinematics of fault rocks in the Nahan Thrust, in the vicinity of the Main Frontal Thrust that represents a tectonically active zone in the Himalayan orogen. The Nahan Thrust is characterized by alternating red and gray gouge layers, and a single black gouge layer. Our results from electron microscopy and X-ray diffractometry indicate that the protolith of the red gouge layers is argillaceous sandstone, whereas that of the gray and black gouge layers is sandstone. Microstructures suggest an initially distributed deformation (aseismic creep), followed by a protracted brittle deformation event, and a later aseismic creep stage. The brittle stage is marked by progressive localization of stress, fracture development, cataclasis, frictional sliding, and seismic slips. The black gouge layer acted as the principal slip zone and exhibited ultrafine bands of micrometer-scale slip zones with vapor escape structures and clay clast aggregates, indicating seismic faulting and frictional heating during seismic slips. The preferential seismic rupture nucleation in the black gouge layer indicates a strong lithological dependence on seismic slip in the Nahan Thrust. We also conclude that heterogeneity within the Nahan Thrust resulted from primary lithological variations of the protoliths.

Publisher

Geological Society of America

Subject

Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3