Depositional processes of Marinoan-age diamictites and cap carbonates in northwestern Tarim, China: Implications for chemical weathering following the Marinoan deglaciation

Author:

Lu Lihui1,Han Yigui1,Zhao Guochun12,Huang Kangjun1,Ju Pengcheng1,Wang Zhenfei1,Guo Yu1,Shao Dong1,Hu Haiyan1,Cao Xuyang1

Affiliation:

1. 1State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Northern Taibai Street 229, Xi’an 710069, China

2. 2Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong

Abstract

The Marinoan diamictites and the overlying cap carbonates at continental margins bear key information on the paleo-environment evolution during the collapse of Snowball Earth, such as the timespan of intense chemical weathering. Such a sedimentary suite has been recently discovered in the northwestern Tarim Craton of China, but its depositional processes remain controversial. Here, we present stratigraphic and isotope geochemical studies on the diamictites of the Yuermeinak Formation and the overlying cap carbonates of the Sugetbrak Formation in the Aksu region of the northwestern Tarim Craton. Multiple unconformities in the region suggest major tectonic uplifting during the Cryogenian, probably resulting in a mountainous topography and varying dip directions of the overlying cap carbonates. The paleo-elevation of these mountains might have been higher and above sea level. We propose new depositional processes that involved four stages from glacial continental facies to neritic facies and/or alluvial fan systems. The first stage formed the massive diamictites and stratified siltstones with dropstones, recording cycles between glacier retreat and advance. The second stage involved the late transgression at the end of the deglaciation and the formation of calcareous massive diamictites with negative δ13C. The third stage included the onset of cap carbonate deposition and the alternating precipitation of calcareous mudstones and carbonates, reflecting frequent sea-level changes. The fourth stage was related to a widespread marine regression that developed a terrestrial environment and the sedimentation of the sandstones of the Sugetbrak Formation. Furthermore, we suggest that intense chemical weathering on exposed continents after the Marinoan deglaciation likely lasted for only hundreds of thousands of years, releasing ample alkalis into the ocean and facilitating the precipitation of the cap carbonates.

Publisher

Geological Society of America

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3