Formation of the main sulfide zone at Unki Mine, Shurugwi Subchamber of the Great Dyke, Zimbabwe: Constraints from petrography and sulfide compositions

Author:

Chaumba Jeff B.1,Musa Caston T.2

Affiliation:

1. Department of Geology and Geography, University of North Carolina at Pembroke, 211 Old Main, 1 University Drive, Pembroke, North Carolina 28372, USA

2. Unki Mines (Pvt.) Limited, Anglo American PLC, P.O. Box 254, Shurugwi, Zimbabwe

Abstract

Abstract The major platinum group element (PGE) occurrence in the Great Dyke of Zimbabwe, the main sulfide zone, is a tabular stratabound layer hosted in pyroxenites, and it is broadly similar in form throughout the length of the Great Dyke. We conducted a petrographic and sulfide composition study on a sulfide-enriched zone from the contact of the mafic sequence–ultramafic sequence through the main sulfide zone at Unki Mine in the Shurugwi Subchamber to its underlying footwall rocks to place some constraints on the origin of the rocks. Pyrrhotite, pentlandite, chalcopyrite, and pyrite are the base metal sulfides that were encountered during the study. Pyrrhotite, pentlandite, and chalcopyrite typically occurred as inclusions in both primary (orthopyroxene, plagioclase, and clinopyroxene) and secondary (amphibole and chlorite) silicate phases, whereas pyrite was observed in only three samples, where it occurred in association with pyrrhotite. The concentrations of PGEs in the base metal sulfides were nearly all at or below minimum detection limits. The intercumulus nature of some of these sulfides in the investigated sequence suggests that they were likely formed during the crystallization history of these rocks. The occurrence of pyrite, which we interpret to be an alteration phase, suggests that a late-stage event, likely formed during hydrothermal alteration, helped to concentrate the mineralization at Unki Mine. In some cases, however, these sulfides occur partially surrounding some chromite and silicate phases. Thus, some sulfides in the Unki Mine area were likely formed early in the crystallization history of the Great Dyke, whereas others were formed late during hydrothermal processes. Low concentrations of PGEs such as platinum (Pt), palladium (Pd), and rhodium (Rh) in base metal sulfides imply that the PGEs in the main sulfide zone and Unki Mine are hosted either in silicates and/or platinum group minerals. Very low Co contents in pentlandites in the rocks under investigation are interpreted to imply that very limited Fe substitution by Co, and also of Ni by Co, occurred. Broadly comparable trends, with minor variations of Fe in pyrrhotite, of Co and Ni in pentlandite, and of Cu in chalcopyrite, for example, likely reflect magmatic processes. The concentrations of these metals in base metal sulfides vary sympathetically, indicating that their original magmatic signatures were subsequently affected by hydrothermal fluids. The spiked pattern displayed by the variations in the percent modal proportions of the base metal sulfides across the entire investigated stratigraphic section is interpreted to reflect remobilization of the sulfides during hydrothermal alteration. Depletions in some elements, which occur near the base and at the top of the investigated succession, are likely a result of this hydrothermal alteration.

Publisher

Geological Society of America

Subject

Stratigraphy,Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3