Conglomerate recycling in the Himalayan foreland basin: Implications for grain size and provenance

Author:

Quick Laura1,Sinclair H.D.1,Attal M.1,Singh V.2

Affiliation:

1. School of GeoSciences, University of Edinburgh, Drummond Street, Edinburgh, EH8 9XP, UK

2. Department of Geology, University of Delhi, Delhi 110007, India

Abstract

Abstract The nature of coarse sediment in rivers emerging from mountain ranges determines rates of downstream fining, the position of the gravel-sand transition, sediment entrainment thresholds, and channel morphologies. Additionally, in the stratigraphic record, clast size distributions and lithologies are used to reconstruct paleo-hydraulic conditions and source area provenance. Using Himalayan rivers, we demonstrate that the signal of first-generation clasts derived from the hinterland of a mountain range can be significantly altered by recycling older, structurally exhumed foreland deposits. The Siwalik foothills of the Himalaya comprise Neogene fluvial sandstones and quartzite-rich conglomerates with well-rounded clasts that were deposited in the Indo-Gangetic foreland basin and later exhumed by erosion, following uplift along the Himalayan mountain front. Mass balance calculations reveal that the Upper Siwalik conglomerate may contribute a significant proportion of the total gravel flux exported from the main Himalayan catchments (up to 100%) despite forming <1% of the catchment geology. Three end-member catchments with variable proportions of gravel flux from Siwalik conglomerates are analyzed to test for the effects of conglomerate recycling. Catchments that recycle the most Upper Siwalik conglomerate form quartzite-rich gravel bars comprising well-rounded pebbles and a narrow grain size distribution, mimicking the characteristics of the Upper Siwalik conglomerate. Conversely, catchments that recycle the least Upper Siwalik conglomerate form gravel bars with a range of Himalayan lithologies, angular quartzite pebbles and a wider grain size distribution. This study highlights that recycling of quartzite-rich conglomerate can dramatically modify the flux, lithology, grain size, and shape of gravel entering the Indo-Gangetic Plain.

Publisher

Geological Society of America

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3