Late Miocene to recent tectonic evolution of the Macquarie Triple Junction

Author:

Gasperini Luca1,Ligi Marco1,Accettella Daniela2,Bosman Alessandro3,Cuffaro Marco3,Lodolo Emanuele2,Martorelli Eleonora3,Muccini Filippo34,Palmiotto Camilla1,Polonia Alina1

Affiliation:

1. 1Istituto di Scienze Marine, CNR, 40129 Bologna, Italy

2. 2Istituto Nazionale di Oceanografia e di Geofisica Sperimentale, 34010 Trieste, Italy

3. 3Istituto di Geologia Ambientale e Geoingegneria, CNR, 00185 Rome, Italy

4. 4Istituto Nazionale di Geofisica e Vulcanologia, 00143 Rome, Italy

Abstract

Abstract The Pacific, Antarctic, and Macquarie lithospheric plates diverge from the Macquarie Triple Junction (MTJ) in the southwestern Pacific Ocean, south of Macquarie Island. Morphobathymetric, magnetic, and gravity data have been used to understand the evolution of the three accretionary/transform boundaries that meet at the MTJ. Plate velocities, estimated near the MTJ and averaged over the past 3 m.y., indicate an unstable ridge–fault–fault triple junction. The long life (>6 m.y.) of this configuration can be attributed to a rapid increase in spreading asymmetry along the Southeast Indian Ridge segment as it approaches the MTJ, and to transtension along the southernmost strand of the Macquarie–Pacific transform boundary. A major change in plate motion triggered the development of the Macquarie plate at ca. 6 Ma and makes clear the recent evolution of the MTJ, including (1) shortening of the Southeast Indian Ridge segment; (2) formation of the westernmost Pacific-Antarctic Ridge, which increased its length over time; and (3) lengthening of the two transform boundaries converging in the MTJ. The clockwise change of the Pacific-Antarctic motion (ca. 12–10 Ma) led to complex geodynamic evolution of the plate boundary to the east of the triple junction, with fragmentation of the long-offset Emerald transform fault and its replacement over a short time interval (1–2 m.y.) with closely spaced, highly variable transform offsets that were joined by short ridge segments with time-varying asymmetries in the spreading rates.

Publisher

Geological Society of America

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3