Geologic map of southern Panamint Valley, southern Panamint Range, and central Slate Range, California, USA

Author:

Andrew Joseph E.1ORCID

Affiliation:

1. Department of Geology, University of Kansas, 1414 Naismith Drive, Room 154, Lawrence, Kansas 66045-3106, USA

Abstract

Abstract This detailed geologic map and supplemental digital data set1 examine and demonstrate the complex deformational history and reactivation relationships of the southern Panamint Valley area (California, USA), from active transtension of the Walker Lane belt, Miocene extension of the Basin and Range, multiple Mesozoic events related to subduction, and Neoproterozoic extension. This collection of map data focuses on the geometry, kinematics, and relative timing of deformation to understand the deformation history and effects of structural reactivation. Andrew and Walker (2009) used these geologic mapping data to palinspastically restore the Fish Canyon area of the Slate Range to overlapping the western Panamint Range at Goler Wash. Neogene extension and subsequent dextral transtension has created a complex network of faults via partial reactivation of Mesozoic and Neoproterozoic structures and has separated the Slate Range from the Panamint Range. The Neogene fault system changes from south to north from dextral strike-slip along the southern Panamint Valley fault to oblique normal slip along the Emigrant fault at a triple junction with the sinistral-oblique normal Manly Pass fault. The Mesozoic deformation history is different in the two ranges across Panamint Valley. The Slate Range was the hanging wall to Jurassic and Cretaceous contractional deformation; this same deformation in the Panamint Range to the east was localized along the western range flank with the majority of the Panamint Range thus being in the footwall to Mesozoic contraction. The western Panamint Range preserves migmatitic fabrics and deformation due to Jurassic contraction and plutonism. The Goldbug fault, along the western Panamint Range, places Paleoproterozoic to Mesoproterozoic rocks over Neoproterozoic to Cretaceous rocks. Jurassic contraction has top-to-the-northeast relative transport and the more discrete Cretaceous thrust faulting in the Panamint Range has top-to-the-east transport. The Butte Valley fault, previously recognized farther north of the map area in the Panamint Range, cuts Late Jurassic rocks and structures. Neoproterozoic to Cambrian sedimentary rocks with top-to-the-northeast contractional deformation occur as relative down-dropped block exposed east of the Butte Valley fault. The Butte Valley fault continues southward and is then deflected by Late Cretaceous thrust faulting on the Goldbug fault. Neoproterozoic deformation is more difficult to discern but is hypothesized to relate to abundant olistostromes mapped within the Kingston Peak Formation in the Panamint Range (i.e., Prave, 1999). This detailed geologic mapping and collection of structural data for the rocks in the southern Panamint Valley area were created using digital in-the-field geographic information systems software running on a field-hardened laptop computer. This map is a simplification of detailed geologic mapping data collected at 1:6000 scales and reduced to 1:20000 scale. Structural data includes kinematic and relative timing of deformation information.

Publisher

Geological Society of America

Subject

Stratigraphy,Geology

Reference2 articles.

1. Reconstructing late Cenozoic deformation in central Panamint Valley, California: Evolution of slip partitioning in the Walker Lane;Andrew;Geosphere,2009

2. Two diamictites, two cap carbonates, two δ13C excursions, two rifts: The Neoproterozoic Kingston Peak Formation, Death Valley, California;Prave,1999

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3