Structure and metamorphism of a subducted seamount (Zagros suture, Southern Iran)

Author:

Bonnet G.12,Agard P.1,Angiboust S.3,Monié P.4,Fournier M.1,Caron B.1,Omrani J.5

Affiliation:

1. Sorbonne Université, CNRS-INSU, Institut des Sciences de la Terre de Paris, ISTeP UMR 7193, CNRS F-75005 Paris, France

2. Earth Research Institute, University of California, Santa Barbara, California 93106, USA

3. Université de Paris, Institut de Physique du Globe de Paris, CNRS, F-75005 Paris, France

4. Géosciences Montpellier UMR-CNRS 5243, Place E. Bataillon, 34090 Montpellier, France

5. Geological Survey of Iran, Tehran, Iran

Abstract

Abstract Millions of seamounts on modern and past seafloor end up being subducted, and only small pieces are recovered in suture zones. How they are metamorphosed and deformed is, however, critical to understand how seamount subduction can impact subduction zone geometry, fluid circulation or seismogenic conditions, and more generally to trace physical conditions along the subduction boundary. Since geophysical studies mostly reach the shallowest subducted seamounts and miss internal structures due to low resolution, there is a high need for fossil seamount exposures. We herein report on a fully exposed, 3D example of seamount that we discovered in the Siah Kuh massif, Southern Iran. Through a series of sections across the whole massif and the combination of magmatic-metamorphic-sedimentary petrological data, we document several distinct stages associated with seamount build-up on the seafloor and with subduction. In particular, we constrain different stages of metamorphism and associated mineralogy, with precise conditions for subduction-related metamorphism around 250 °C and 0.7 GPa, in the middle of the seismogenic zone. Extensive examination of the seismogenic potential of the Siah Kuh seamount reveals that it was not a large earthquake asperity (despite the report of a rare example of cm-scale, high-pressure pseudotachylyte in this study), and that it possibly behaved as a barrier to earthquake propagation. Finally, we discuss the nature of high-pressure fluid circulation preserved in this seamount.

Publisher

Geological Society of America

Subject

Stratigraphy,Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3