Early accretion and prolonged carbonation of the Pacific Ocean's oldest crust

Author:

Kendrick Mark A.1,Zhao Jianxin1,Feng Yuexing1

Affiliation:

1. School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD 4072, Australia

Abstract

Abstract Newly formed oceanic crust is altered by seawater and carbonated at low temperatures over poorly defined periods of time. We applied in situ U-Pb dating to investigate 28 carbonate veins from Ocean Drilling Program Hole 801C, which is situated in the oldest Jurassic-age oceanic crust preserved in the western Pacific Ocean. Our results indicate that Pacific Ocean crust began accreting at 192 ± 6 Ma, which is ~25 m.y. earlier than previously recognized. Carbonation peaked at 171 ± 5 Ma and continued at a low rate for more than ~65 m.y. after accretion. Jurassic carbonation rates varied over ~10 m.y. timescales but encompassed a range similar to that observed today. These data suggest that carbonation rates are relatively insensitive to changes in atmospheric CO2, but confirm the longevity of seafloor alteration as a critical control in global volatile cycling.

Publisher

Geological Society of America

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3