Ice-thickness variation during marine oxygen isotope stage 4–2 glaciation determined from kame terraces in the Rangitata Valley, New Zealand

Author:

Thackray* Glenn D.1,Rittenour Tammy M.2,Shulmeister James3

Affiliation:

1. Department of Geosciences, Idaho State University, Pocatello, Idaho 83209, USA

2. Department of Geosciences, Utah State University, Logan, Utah 84322, USA

3. School of Earth and Environment, University of Canterbury, Christchurch 8140, New Zealand

Abstract

ABSTRACT An extensive kame-terrace sequence in the middle Rangitata Valley reveals ice-volume fluctuations spanning the last (Otiran) glaciation. Stratigraphic and sedimentologic characteristics document lateral ice-marginal processes and provide context for luminescence dating. The sequence provides novel and complementary data on glacier ice thickness, which fluctuated substantially throughout the Otiran glaciation. Thick ice constructed one of the highest kame terraces (540 m above the valley floor) ca. 68 ka and thinned nearly 500 m to the valley floor by ca. 53 ka. Following an episode of ice thickening to an unknown elevation, ice again thinned to the valley floor by ca. 44 ka. Ice thickened to its greatest late marine oxygen isotope stage (MIS) 3 extent of 480 m by ca. 37 ka, and thinned to 230 m by ca. 31 ka. The final ice expansion, to 260 m, occurred by ca. 25.5 ka, and the ice fluctuated and thinned to 240 m at ca. 22–20 ka and to 170 m at ca. 21–17 ka. Published cosmogenic radionuclide (CRN) ages indicate surface stabilization near the valley floor (55 m) by ca. 18 ka. This ice-thickness chronology provides an independently derived ice-volume record that is consistent with local and regional glacial chronologies. The site, lying between the Mackenzie Basin and the northern Canterbury Plains drainages, displays a chronology with advances correlative in part with each of those regions. Maximum ice extent occurred 70–65 ka in the Rangitata Valley and the Mackenzie Basin, while the subsequent ice expansion ca. 37 ka is similar in timing to chronologies in both the Rakaia Valley to the north and the Mackenzie Basin to the south.

Publisher

Geological Society of America

Reference54 articles.

1. Dose-rate conversion factors: Update: Ancient TL;Adamiec,1998

2. Reinterpretation of the glacial chronology of South Westland, New Zealand;Almond;New Zealand Journal of Geology and Geophysics,2001

3. Measurement of anomalous fading for feldspar IRSL using SAR;Auclair;Radiation Measurements,2003

4. Glacial Geomorphology of the Central South Island, New Zealand: Lower Hutt, New Zealand;Barrell;GNS Science Monograph,2011

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A model of ice-marginal sediment-landform development at Lake Tekapo, Southern Alps, New Zealand;Geografiska Annaler: Series A, Physical Geography;2022-06-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3