Detrital zircon geochronology and Hf isotope geochemistry of Mesozoic sedimentary basins in south-central Alaska: Insights into regional sediment transport, basin development, and tectonics along the NW Cordilleran margin

Author:

Fasulo Cooper R.1,Ridgway Kenneth D.1,Trop Jeffrey M.2

Affiliation:

1. Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, Indiana 47907, USA

2. Department of Geology and Environmental Geosciences, Bucknell University, Moore Avenue, Lewisburg, Pennsylvania 17837, USA

Abstract

Abstract The Jurassic–Cretaceous Nutzotin, Wrangell Mountains, and Wellesly basins provide an archive of subduction and collisional processes along the southern Alaska convergent margin. This study presents U-Pb ages from each of the three basins, and Hf isotope compositions of detrital zircons from the Nutzotin and Wellesly basins. U-Pb detrital zircon ages from the Upper Jurassic–Lower Cretaceous Nutzotin Mountains sequence in the Nutzotin basin have unimodal populations between 155 and 133 Ma and primarily juvenile Hf isotope compositions. Detrital zircon ages from the Wrangell Mountains basin document unimodal peak ages between 159 and 152 Ma in Upper Jurassic–Lower Cretaceous strata and multimodal peak ages between 196 and 76 Ma for Upper Cretaceous strata. Detrital zircon ages from the Wellesly basin display multimodal peak ages between 216 and 124 Ma and juvenile to evolved Hf compositions. Detrital zircon data from the Wellesly basin are inconsistent with a previous interpretation that suggested the Wellesly and Nutzotin basins are proximal-to-distal equivalents. Our results suggest that Wellesly basin strata are more akin to the Kahiltna basin, which requires that these basins may have been offset ∼380 km along the Denali fault. Our findings from the Wrangell Mountains and Nutzotin basins are consistent with previous stratigraphic interpretations that suggest the two basins formed as a connected retroarc basin system. Integration of our data with previously published data documents a strong provenance and temporal link between depocenters along the southern Alaska convergent margin. Results of our study also have implications for the ongoing discussion concerning the polarity of subduction along the Mesozoic margin of western North America.

Publisher

Geological Society of America

Subject

Stratigraphy,Geology

Reference121 articles.

1. Geochronologic studies in the Yukon Tanana Upland, east-central Alaska;Aleinikoff,1981

2. Cenozoic basin development and strike-slip displacement along the Denali fault system, eastern Alaska Range, Alaska: A provenance approach;Allen;Geological Society of America Abstracts with Programs,2018

3. Architecture of the Chugach accretionary complex as revealed by detrital zircon ages and lithologic variations: Evidence for Mesozoic subduction erosion in south-central Alaska;Amato;Geological Society of America Bulletin,2013

4. Mesozoic and early Cenozoic magmatic evolution of the Canadian Cordillera;Armstrong,1988

5. The U-Pb and Hf isotope evidence of detrital zircons of the Ordovician Ollantaytambo Formation, southern Peru, and the Ordovician provenance and paleogeography of southern Peru and northern Bolivia;Bahlburg;Journal of South American Earth Sciences,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3