Large Si isotope fractionation reveals formation mechanism of quartz in silicon-poor carbonatite

Author:

Huang Yong-Shu12,Liu Qi3,Liu Fei-Xiang3,Li Xiao-Chun24,Liu Yu1,Tang Guo-Qiang1,Fan Hong-Rui24,Li Xian-Hua12,Li Qiu-Li12ORCID

Affiliation:

1. 1State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

2. 2College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

3. 3State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China

4. 4Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

Abstract

Abstract Carbonatites, the most silica-poor igneous rocks, have a close relationship with rare earth element (REE) ore deposits, where low SiO2 activity is considered to contribute to economic REE mineralization. However, a paradox is raised by quartz, commonly regarded as a Si-saturation proxy, which occurs in some giant carbonatites or carbonatite-related REE deposits such as those at Bayan Obo, China, and Mountain Pass, California, USA. A unique perception for the origin of quartz in carbonatites is provided here using Si isotope analysis. Quartz grains from the Bayan Obo carbonatite and REE ores commonly occur as inclusions in fluorite, or they coexist with fluorite, thus implicating the importance of fluorine in their hydrothermal origin. The quartz grains have remarkably large variations in δ30Si values, ranging from −4.55‰ to 1.71‰ in secondary ion mass spectrometry analyses, which have not been documented elsewhere in high- to medium-temperature magmatic-hydrothermal processes. Theoretical calculations demonstrate that such large Si isotopic fractionation can be generated during the formation and breakdown of Si-O and Si-F bonds due to their difference in bond strength. These results imply the presence of silicon fluoride species in the fluid and highlight the role of fluorine in quartz formation in silicon-poor carbonatite. The exsolved fluids from carbonatite magmas containing silicon fluoride species may decrease silica activity, which has the potential to impede incorporation of REEs into magmatic apatite, and thus facilitate late-stage hydrothermal REE enrichment and formation of REE orebodies.

Publisher

Geological Society of America

Subject

Geology

Reference30 articles.

1. Rare earth element mobility in and around carbonatites controlled by sodium, potassium, and silica;Anenburg;Science Advances,2020

2. Formation of rare earth deposits in carbonatites;Anenburg;Elements,2021

3. Calculated silica activities in carbonatite liquids;Barker;Contributions to Mineralogy and Petrology,2001

4. The Sedimentary Carbonate-Hosted Giant Bayan Obo REE-Fe-Nb Ore Deposit of Inner Mongolia, China: A Cornerstone Example for Giant Polymetallic Ore Deposits of Hydrothermal Origin;Chao;U.S. Geological Survey Bulletin,1997

5. Experimental study of trace element distribution between calcite, fluorite and carbonatitic melt in the system CaCO3 + CaF2 + Na2CO3 ± Ca3(PO4)2 at 100 MPa;Chebotarev;Contributions to Mineralogy and Petrology,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3