Geochronology, petrogenesis, and magmatic oxidation state of the Mangling intrusive complex, Northern Qinling Belt, Central China: Implications for magma fertility and tectonic setting

Author:

Zhao Liandang123,Zheng Xiaotong1,Jiao Jiangang123,Han Feng14,Zhou Bin56,Fan Peng56,Jia Li1,Ma Yunfei1

Affiliation:

1. 1School of Earth Science and Resources, Chang’an University, Xi’an 710054, China

2. 2Key Laboratory of Western China’s Mineral Resources and Geological Engineering, Ministry of Education, Chang’an University, Xi’an 710054, China

3. 3Xi’an Key Laboratory for Mineralization and Efficient Utilization of Critical Metals, Xi’an 710054, China

4. 4Baiyin Mineral Exploration Institute of Gansu Non-ferrous Metal Geological Exploration Bureau, Baiyin 730900, China

5. 5Shaanxi Geological Survey Planning Research Center, Xi’an 710068, China

6. 6Shaanxi Geological Survey Fund Center, Xi’an 710068, China

Abstract

The Mangling intrusive complex has different dioritic to granitic phases and is spatially and temporally related to molybdenum deposits in the Qinling Orogen. Zircon U-Pb dating of the Mangling intrusive complex indicates that dioritic rocks (biotite diorite and biotite diorite enclave; ca. 150−147 Ma) formed earlier than granitic rocks (medium- to fine-grained and fine-grained monzogranite and K-feldspar granite; ca. 145−141 Ma). The Mangling dioritic rocks exhibit large ion lithosphere element (e.g., Rb) and light rare earth element enrichment and high field strength element (e.g., Nb, Ta, and Ti) depletion. They have low to moderate SiO2 (51.33−58.16 wt%), high MgO (3.10−4.75 wt%) and Mg# (48−60), and negative zircon εHf(t) values (−11.6 to −6.8), suggesting origination from the continental lithospheric mantle that may have been metasomatized by previous sediment-derived melts and slab-derived fluids constrained by high Nb/Y, Th/Yb, and Rb/Y ratios. The Mangling granitic rocks are I-type granites and have high SiO2 (67.90−81.88 wt%) and low MgO (0.16−0.74 wt%). They have low and negative zircon εHf(t) values (−18.7 to −1.9) and old zircon Hf two-stage model ages (2334−1287 Ma), as well as similar mineral fractionation (e.g., hornblende, biotite, sphene, and apatite) with the Mangling dioritic rocks, indicating that they were derived from the remelting of old crustal rocks (e.g., Xiong’er and Kuanping groups) by the evolved underplated mafic magma. Compared with the Taoguanping mineralized monzogranite in the Northern Qinling Belt, zircon geochemistry (e.g., Ce4+/Ce3+, Eu/Eu*, and ΔFMQ [relative fayalite-magnetite-quartz buffer]) indicates that magma of the Mangling intrusive complex (except the biotite diorite) has high oxygen fugacity and small fractionated granitic intrusions, which are coeval with the biotite diorite enclave or younger than the Mangling granitic rocks, may have potential for generating porphyry molybdenum mineralization. The combination of this study and previous studies corroborates that the Qinling Orogen underwent an intracontinental orogenic evolution in a post-collisional compression to extension transitional setting during the Late Jurassic to Early Cretaceous, affected by far-field Paleo-Pacific slab subduction.

Publisher

Geological Society of America

Subject

Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3