Provenance of Pennsylvanian–Permian sedimentary rocks associated with the Ancestral Rocky Mountains orogeny in southwestern Laurentia: Implications for continental-scale Laurentian sediment transport systems

Author:

Leary Ryan J.1ORCID,Umhoefer Paul2,Smith M. Elliot2,Smith Tyson M.3,Saylor Joel E.4,Riggs Nancy2,Burr Greg2,Lodes Emma2,Foley Daniel2,Licht Alexis5,Mueller Megan A.5,Baird Chris5

Affiliation:

1. Department of Earth and Environmental Science, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, USA

2. School of Earth and Sustainability, Northern Arizona University, Flagstaff, Arizona 86011, USA

3. Department of Earth and Atmospheric Sciences, University of Houston, Houston, Texas 77204, USA

4. Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada

5. Department of Earth and Space Sciences, University of Washington, Seattle, Washington 98195, USA

Abstract

Abstract The Ancestral Rocky Mountains system consists of a series of basement-cored uplifts and associated sedimentary basins that formed in southwestern Laurentia during Early Pennsylvanian–middle Permian time. This system was originally recognized by aprons of coarse, arkosic sandstone and conglomerate within the Paradox, Eagle, and Denver Basins, which surround the Front Range and Uncompahgre basement uplifts. However, substantial portions of Ancestral Rocky Mountain–adjacent basins are filled with carbonate or fine-grained quartzose material that is distinct from proximal arkosic rocks, and detrital zircon data from basins adjacent to the Ancestral Rocky Mountains have been interpreted to indicate that a substantial proportion of their clastic sediment was sourced from the Appalachian and/or Arctic orogenic belts and transported over long distances across Laurentia into Ancestral Rocky Mountain basins. In this study, we present new U-Pb detrital zircon data from 72 samples from strata within the Denver Basin, Eagle Basin, Paradox Basin, northern Arizona shelf, Pedregosa Basin, and Keeler–Lone Pine Basin spanning ∼50 m.y. and compare these to published data from 241 samples from across Laurentia. Traditional visual comparison and inverse modeling methods map sediment transport pathways within the Ancestral Rocky Mountains system and indicate that proximal basins were filled with detritus eroded from nearby basement uplifts, whereas distal portions of these basins were filled with a mix of local sediment and sediment derived from marginal Laurentian sources including the Arctic Ellesmerian orogen and possibly the northern Appalachian orogen. This sediment was transported to southwestern Laurentia via a ca. 2,000-km-long longshore and aeolian system analogous to the modern Namibian coast. Deformation of the Ancestral Rocky Mountains slowed in Permian time, reducing basinal accommodation and allowing marginal clastic sources to overwhelm the system.

Publisher

GeoScienceWorld

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3