Structural analysis and tectonic evolution of the western domain of the Eastern Kunlun Range, northwest Tibet

Author:

Wu Chen1,Liu Changfeng1,Fan Suoya2,Zuza Andrew V.3,Ding Lin4,Liu Wencan1,Ye Baoying1,Yang Shijie5,Zhou Zhiguang1

Affiliation:

1. Structural Geology Group, China University of Geosciences (Beijing), Beijing 100083, China

2. Department of Earth and Atmospheric Sciences, University of Houston, Houston, Texas 77204, USA

3. Nevada Bureau of Mines and Geology, University of Nevada, Reno, Nevada 8957, USA

4. Institute of Tibetan Plateau Research, Chinese Academy of Sciences, P.O. Box 9825, Beijing 100085, China

5. Exploration and Development Research Institute of PetroChina, Liaohe Oilfield Company, Panjin 124000, China

Abstract

AbstractThe Tibetan Plateau, the largest highland on Earth, formed due to the collision of India-Asia over the past 50–60 m.y., and the evolution of the Tibetan Plateau impacts our knowledge of continental tectonics. Examination of the northernmost margin of the Tibetan Plateau is key to unravelling the deformation mechanisms acting in northern Tibet. The left-slip Altyn Tagh fault system defines the northwest margin of the Tibetan Plateau, separating the Western and Eastern Kunlun Ranges in the southwest. Both Cenozoic and pre-Cenozoic crustal deformation events at this junction between the Altyn Tagh and Kunlun Ranges were responsible for the construction of northwestern Tibet, yet the relative contribution of each phase remains unconstrained. The western domain of the Eastern Kunlun Range is marked by active NE-trending, left-slip deformation of the Altyn Tagh fault and an E-striking Cenozoic thrust system developed in response India-Asia collision. To better constrain the Paleozoic Altyn Tagh and Kunlun orogens and establish the Cenozoic structural framework, we conducted an integrated investigation involving detailed geologic mapping (∼1:50,000 scale), U-Pb zircon geochronology, and synthesis of existing data sets across northwestern Tibet. Our new zircon analyses from Paleoproterozoic–Cretaceous strata constrain stratigraphic age and sediment provenance and highlight Proterozoic–Paleozoic arc activity. We propose a tectonic model for the Neoproterozoic–Mesozoic evolution of northwestern Tibet wherein restoration of an ∼56-km-long balanced cross section across the western domain of the Eastern Kunlun suggests that Cenozoic minimum shortening strain was ∼30% (∼24 km shortening). Field evidence suggests this shortening commenced after ca. 25–20 Ma, which yields an average long-term shortening rate of 1.2–0.9 mm yr–1 and strain rates of 4.7 × 10–16 s–1 to 2.3 × 10–16 s–1. Geometric considerations demonstrate that this contractional deformation did not significantly contribute to left-slip offset on the Altyn Tagh fault, which has ∼10 mm/yr slip rates.

Publisher

Geological Society of America

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3