Giant meandering channel evolution, Campos deep-water salt basin, Brazil

Author:

Covault Jacob A.1ORCID,Sylvester Zoltán1,Ceyhan Can1,Dunlap Dallas B.1

Affiliation:

1. Bureau of Economic Geology, Jackson School of Geosciences, University of Texas at Austin, Austin, Texas 78713, USA

Abstract

Abstract Submarine channels are conduits for sediment delivery to continental margins, and channel deposits can be sandy components of the fill in tectonically active salt basins. Examples of salt-withdrawal basin fill commonly show successions of sandy channelized or sheet-like systems alternating with more mud-rich mass-transport complexes and hemipelagites. This alternation of depositional styles is controlled by subsidence and sediment-supply histories. Salt-basin fill comprising successions of largely uninterrupted meandering-channel deposition are less commonly recognized. This begs the questions: can sediment supply be large enough to overwhelm basin subsidence and result in a thick succession of channel deposits, and, if so, how would such a channel system evolve? Here, we use three-dimensional seismic-reflection data from a >1500 km2 region with salt-influenced topography in the Campos Basin, offshore Brazil, to evaluate the influence of salt diapirs on an Upper Cretaceous–Paleogene giant meandering submarine-channel system (channel elements >1 km wide; meander wavelengths several kilometers to >10 km). The large scale of the channels in the Campos Basin suggests that sediment discharge was large enough to sustain the meandering channel system in spite of large variability in subsidence across the region. We interpreted 22 channel centerlines to reconstruct the detailed kinematic evolution of this depositional system; this level of detail is akin to that of recent studies of meandering fluvial channels in time-lapse Landsat satellite images. The oldest channel elements are farther from salt diapirs than many of the younger ones; the centerlines of the older channel elements exhibit a correlation between curvature and migration rate, and a spatial delay between locations of peak curvature and maximum migration distance, similar to that observed in rivers. As many of the younger channel centerlines expanded toward nearby salt diapirs, their migration pattern switched to downstream translation as a result of partial confinement. Channel segments that docked against salt diapirs became less mobile, and, as a result, they do not show a correlation between curvature and migration rate. The channel migration pattern in the Campos Basin is different compared to that of a tectonically quiescent continental rise where meander evolution is unobstructed. This style of channelized basin filling is different from that of many existing examples of salt-withdrawal minibasins that are dominated by overall less-channelized deposits. This difference might be a result of the delivery of voluminous coarse sediment and high discharge of channel-forming turbidity currents to the Campos Basin from rivers draining actively uplifting coastal mountains of southeastern Brazil. Detailed kinematic analysis of such well-preserved channels can be used to reconstruct the impact of structural deformation on basin fill.

Publisher

Geological Society of America

Subject

Stratigraphy,Geology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3