Hydrothermal sulfate surges promote rare earth element transport and mineralization

Author:

Wan Ye1,Chou I-Ming1,Wang Xiaolin2,Wang Ruoheng13,Li Xiaochun34

Affiliation:

1. 1Laboratory of Experimental Study under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan 572000, China

2. 2State Key Laboratory for Mineral Deposits Research, Frontiers Science Center for Critical Earth Material Cycling & School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu 210023, China

3. 3College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 10049, China

4. 4Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

Abstract

Abstract The generation of sulfate-rich hydrothermal fluids is of great significance to investigate because it is closely associated with the formation of many important ore deposits, such as hydrothermal rare earth element (REE) deposits. However, the transport of REEs in sulfate-rich hydrothermal fluids is complicated by the retrograde solubility of common sulfate minerals depicted in current thermodynamic models. We present in situ and ex situ hydrothermal experimental evidence suggesting that the solubility of alkali sulfate changes from retrograde at low pressures to prograde at elevated pressures. Accordingly, we propose a sulfate surge temperature and pressure (T-P) window (250 °C, 90 MPa), above which the solubility of alkali sulfate increases significantly with increasing P and T. Although REE sulfates are weakly soluble in water, sulfate-rich hydrothermal fluids can transport high contents of REEs under the T-P conditions above the sulfate-surge window. Our results indicate that depressurization, cooling, and alkali loss are key factors controlling REE mineralization, which agrees well with geological observations.

Publisher

Geological Society of America

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3