A magnetostratigraphic age constraint for the proximal synorogenic conglomerates of the Late Cretaceous Cordilleran foreland basin, northeast Utah, USA

Author:

Haque Ziaul1ORCID,Geissman John W.12,DeCelles Peter G.3,Carrapa Barbara3

Affiliation:

1. Department of Geosciences, the University of Texas at Dallas, Richardson, Texas 75080, USA

2. Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico 87131, USA

3. Department of Geosciences, University of Arizona, Tucson, Arizona 85721, USA

Abstract

Abstract Reliable ages of proximal conglomerates in the Cordilleran foreland basin that are associated with emplacement and erosion of major thrust sheets are essential for reconstructing the kinematic history of the Sevier fold-thrust belt. Although these conglomerates have been dated by palynology, their absolute ages have been difficult to determine because of their coarse-grained texture and a lack of marine interbeds and tuffaceous deposits. We collected sets of oriented samples from outcrops in northeastern Utah, USA, to construct an overall magnetic polarity stratigraphy that can be correlated to the geomagnetic polarity time scale (GPTS). We sampled fine-grained, hematitic interbeds in the Upper Cretaceous Echo Canyon Conglomerate and Weber Canyon Conglomerate. Common paleomagnetic and rock magnetic analyses were conducted, and several rock magnetic results indicated that the dominant magnetic carriers in these weakly magnetized rocks are hematite and very subordinate magnetite/titanomagnetite/maghemite and goethite. Demagnetization results show that hematitic, fine-grained sandstone to siltstone intervals carry a geologically stable magnetization with directions and polarity consistent with the Late Cretaceous geomagnetic field. A small percentage of samples carry a low laboratory unblocking temperature secondary overprint residing primarily in goethite. Magnetic polarity results indicate that the Echo Canyon Conglomerate is exclusively of normal polarity and that the younger Weber Canyon Conglomerate is of normal polarity in its lowermost part, reverse polarity in the middle, and normal polarity in the upper part of the sequence. The new data indicate that these coarse-grained strata were most likely deposited over the time span of the magnetic polarity Chron (C) 34n to C33r interval and the younger C33r to C33n interval; the former interval includes the Santonian-Campanian stage boundary (ca. 83.4 Ma/83.1 Ma). Palynological data suggest that these rocks span Coniacian-Santonian time (ca. 89–84 Ma); thus, the most parsimonious correlation of the normal polarity magnetozone of the Echo Canyon Conglomerate is with the youngest part of C34n Superchron, which is of ca. 30 Ma duration (ca. 115 Ma to 83.4 Ma/83.1 Ma). The normal polarity magnetozone of the lower part of the younger Weber Canyon Conglomerate likely correlates to the youngest part of C34n, whereas the reverse and normal magnetozone from the middle and upper parts of the Weber Canyon Conglomerate likely correlate to C33r and C33n, respectively. We infer that the Santonian-Campanian boundary resides in the lower Weber Canyon Conglomerate, which implies that deposition of the unit started prior to the C34n/C33r boundary age (ca. 83.4 Ma/83.1 Ma) and continued through the C33r and C33n chrons. Sediment provenance data and growth structures tie the Echo Canyon and Weber Canyon Conglomerates to emplacement of the Crawford thrust sheet. Based on the magnetic polarity data, as constrained by the biostratigraphic age estimates from these synorogenic deposits, we hypothesize that the principal displacement along the Crawford thrust started during the Coniacian (>C34n/C33r boundary age) and continued into the middle Campanian (<C33r/C33n boundary age), from ca. 90–75 Ma, which is nearly 10 Ma longer than previously thought. The new age constraints demonstrate complete temporal overlap between proximal and distal coarse-grained deposits in this part of the Cordilleran foreland basin, coeval with active thrust displacement and rapid hinterland exhumation.

Publisher

Geological Society of America

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3