Carbon cycling during the India-Asia collision revealed by δ26Mg–δ66Zn–δ98Mo evidence from ultrapotassic volcanoes in NW Tibet

Author:

Wang Jian1ORCID,Tappe Sebastian2ORCID,Wang Qiang1ORCID,Li Jie1ORCID,Zou Zongqi1ORCID,Tang Gong-Jian1ORCID

Affiliation:

1. 1State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China

2. 2Department of Geosciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway

Abstract

Abstract India-Asia continental collision–induced volcanic gas emissions are thought to have played an important role in driving Cenozoic atmospheric CO2 variations, yet the details of how the deep carbon cycle may influence volcanic CO2 degassing are not understood. We present a novel study employing Mg-Zn-Mo isotopic compositions of Cenozoic ultrapotassic lavas from NW Tibet. The negative Mg-Zn isotope correlation (δ26Mg = −0.39‰ to −0.19‰; δ66Zn = +0.27‰ to +0.36‰), bolstered by petrographic analysis of mantle-derived xenoliths from these lavas, demonstrates that the ultrapotassic magmas originated from a lithospheric mantle source that had been enriched by recycled carbonate-bearing sediments rich in calcite and dolomite. Very low δ98Mo values (−0.78‰ to 0‰) relative to the average continental crust (δ98Mo = +0.10‰ to +0.35‰) further indicate that the sedimentary components were derived from the subducted Indian continental crust after its dehydration. Monte Carlo modeling estimates that the input flux of carbon (elemental C) from such sediments into the lithospheric mantle is ~5.6 Mt/yr, with a predicted CO2 emission rate of ~15.5 Mt/yr. We suggest that the still ongoing subduction of the Indian tectonic plate has played a crucial role in introducing substantial quantities of carbonate-rich sediments into the Tibetan lithospheric mantle, leading to the sequestration of large amounts of CO2 via carbonatite metasomatism. Hence, partial melting of such a carbon-rich mantle reservoir in an orogenic setting provides the positive feedback mechanism that can explain the high flux of volcanic CO2 during India-Asia collision. These findings not only highlight the importance of continental subduction, sediment recycling, and mantle metasomatism by carbon-rich melts/fluids in the generation of Tibetan ultrapotassic volcanism, but they also show how the deep carbon cycle influences volcanic CO2 degassing.

Publisher

Geological Society of America

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3