Water contents and hydrogen isotope compositions of amphibole in aillikites from the Tarim large igneous province, NW China: Insight into Earth’s deep water cycle

Author:

Wang Changhong1,Zhang Zhaochong1,Giuliani Andrea2,Bo Hongze3,Krmíček Lukáš456,Li Xiaoguang7

Affiliation:

1. 1State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China

2. 2Institute of Geochemistry and Petrology, Department of Earth Sciences, ETH Zurich, Clausiusstrasse 25, Zurich 8092, Switzerland

3. 3Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

4. 4Institute of Geology of the Czech Academy of Sciences, Rozvojová 269, CZ-165 02 Praha 6, Czech Republic

5. 5Brno University of Technology, Faculty of Civil Engineering, Institute of Geotechnics, Veveří 95, CZ-602 00 Brno, Czech Republic

6. 6BIC Brno, Technology Innovation Transfer Chamber, Purkyňova 648/125, CZ-612 00 Brno, Czech Republic

7. 7State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

Abstract

Water is known to play a crucial role in the generation of many large igneous provinces (LIP) worldwide, but the amount and origin of the water in their sources is still under debate. To address this question, this paper presents in situ major-, trace-element, and Sr isotope data coupled with bulk-mineral O-H-He isotope analyses of amphibole in a suite of aillikites from the Tarim LIP (NW China). The cores of zoned macrocrysts and microcrysts display partially overlapping compositions ranging between edenite and pargasite (75−83 versus 75−80 Mg#), which suggest a common origin from an evolving magma. The rims (Mg# = 75−80) of both macrocrysts and microcrysts are very similar to their cores for many elements, except for higher Sr and Ba contents. All the amphibole zones show similar primitive mantle−normalized trace element patterns, suggesting that they crystallized at different stages during magmatic evolution. This interpretation is confirmed by the homogenous Sr isotope compositions (87Sr/86Sr(i) = 0.70298−0.70394) of these amphiboles, which overlap with those of magmatic apatites and perovskites in these aillikites. The hydrogen isotope compositions (δD = −120‰ to −140‰) of the amphiboles are significantly lower than average mantle values. Given the low water contents (<0.66 wt%) of these minerals, the low H isotope signatures of the amphiboles might be caused by variable H2O loss during magma ascent. However, open-system Rayleigh fractionation modeling suggests that the hydrogen isotope compositions of these amphibole phenocrysts cannot be fully reproduced by crystallization following magmatic degassing. These low δD values require incorporation of recycled altered oceanic crust containing hydrous components in the plume source of these aillikites, which is consistent with the previously published moderately radiogenic He isotope ratios of olivine separates and bulk-rock Os and Pb isotope data for these same samples. We conclude that water in these magmas was derived from a plume source containing recycled water-bearing oceanic crust.

Publisher

Geological Society of America

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3