Tracing Oligocene−Miocene source-to-sink systems in the deep Levant Basin: A sandstone provenance study

Author:

Glazer Adar1,Avigad Dov1,Morag Navot2,Gerdes Axel3

Affiliation:

1. 1Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel

2. 2Geological Survey of Israel, 32 Yesha’ayahu Leibowitz Street, Jerusalem 9692100, Israel

3. 3Institute of Geosciences, Goethe University, Altenhöferallee 1, Frankfurt am Main 60438, Germany

Abstract

The Levant Basin in the Eastern Mediterranean contains an ∼3-km-thick, predominantly siliciclastic section of Oligocene−Miocene age, which hosts large hydrocarbon reservoirs (“Tamar Sands Play”). Here, we present a provenance study of Oligocene−Miocene sandstones based on detrital zircon U-Pb-Hf and heavy mineral assemblages. Samples were retrieved from four boreholes across the Levant Basin: Myra-1, Dolphin-1, Leviathan-1, and Karish North-1. Our investigations revealed that the sediments are dominated by Neoproterozoic and older Precambrian zircons with variable Hf isotopic composition, indicating that they were mainly reworked from Paleozoic−Mesozoic sandstones of African-Arabian provenance, with minor derivation from the Neoproterozoic basement of the Arabian-Nubian Shield. Variations in the proportions of pre−900 Ma zircons were encountered in various levels of the siliciclastic section. These zircons were markedly enriched (44%−57%) in the Rupelian and Aquitanian−Burdigalian intervals, accompanied by abundant detrital apatite peloids in the heavy mineral fraction, and relatively sparse (21%−38%) in the Chattian−Aquitanian and Langhian−Tortonian intervals, alongside scarce Mesozoic−Cenozoic zircons. These findings allow us to associate the deep-basin detrital record with two sedimentary transport systems that reached the Levant Basin from both NE Africa and Arabia simultaneously until the late Miocene, when sediment transport from Arabia ceased. While Rupelian and Aquitanian−Burdigalian sediments, including the main section of the “Tamar Sands,” were derived mainly from Arabian sources via the Levant continental margin, Chattian−Aquitanian and Langhian−Tortonian sediments were primarily sourced from NE Africa via the Nile Delta. Detrital contribution from the Eurasian side of the Eastern Mediterranean was not identified, suggesting that sand originating in the Arabia-Eurasia collision belt did not reach the Levant Basin.

Publisher

Geological Society of America

Subject

Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3