A non–plate tectonic model for the Eoarchean Isua supracrustal belt

Author:

Webb A. Alexander G.1ORCID,Müller Thomas2,Zuo Jiawei1,Haproff Peter J.3,Ramírez-Salazar Anthony2

Affiliation:

1. Department of Earth Sciences and Laboratory for Space Research, University of Hong Kong, Pokfulam Road, Hong Kong, China

2. School of Earth and Environment, University of Leeds, Maths/Earth and Environment Building, Leeds LS2 9JT, UK

3. Department of Earth and Ocean Sciences, University of North Carolina, Wilmington, North Carolina 28403, USA

Abstract

Abstract The ca. 3.8–3.6-b.y.-old Isua supracrustal belt of SW Greenland is Earth’s only site older than 3.2 Ga that is exclusively interpreted via plate-tectonic theory. The belt is divided into ca. 3.8 Ga and ca. 3.7 Ga halves, and these are interpreted as plate fragments that collided by ca. 3.6 Ga. However, such models are based on idiosyncratic interpretations of field observations and U-Pb zircon data, resulting in intricate, conflicting stratigraphic and structural interpretations. We reanalyzed published geochronological work and associated field constraints previously interpreted to show multiple plate-tectonic events and conducted field-based exploration of metamorphic and structural gradients previously interpreted to show heterogeneities recording plate-tectonic processes. Simpler interpretations are viable, i.e., the belt may have experienced nearly homogeneous metamorphic conditions and strain during a single deformation event prior to intrusion of ca. 3.5 Ga mafic dikes. Curtain and sheath folds occur at multiple scales throughout the belt, with the entire belt potentially representing Earth’s largest a-type fold. Integrating these findings, we present a new model in which two cycles of volcanic burial and resultant melting and tonalite-trondhjemite-granodiorite (TTG) intrusion produced first the ca. 3.8 Ga rocks and then the overlying ca. 3.7 Ga rocks, after which the whole belt was deformed and thinned in a shear zone, producing the multiscale a-type folding patterns. The Eoarchean assembly of the Isua supracrustal belt is therefore most simply explained by vertical stacking of volcanic and intrusive rocks followed by a single shearing event. In combination with well-preserved Paleoarchean terranes, these rocks record the waning downward advection of lithosphere inherent in volcanism-dominated heat-pipe tectonic models for early Earth. These interpretations are consistent with recent findings that early crust-mantle dynamics are remarkably similar across the solar system’s terrestrial bodies.

Publisher

GeoScienceWorld

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3