Recognizing long-runout pyroclastic flow deposits using paleomagnetism of ash

Author:

Lerner Geoffrey A.1,Cronin Shane J.1,Turner Gillian M.2,Piispa Elisa J.3

Affiliation:

1. School of Environment, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand

2. School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand

3. School of Geological Sciences and Engineering, Universidad Yachay Tech, Hacienda San Jose S/N y Projecto Yachay, Canton Urcuquí, Imbabura 100115, Ecuador

Abstract

Abstract Quantifying the spread of >600 °C pyroclastic flows (more broadly termed pyroclastic density currents—PDCs) is important because they regularly cause major volcanic catastrophes. Far from volcanic flanks, non-welded PDC deposits can be difficult to distinguish from cold-emplaced volcano-sedimentary units. A key indicator of high temperature is the coherence of magnetic remanence among different lithic clasts in a deposit. In long-runout PDCs, distal deposits are dominated by ash particles (<2 mm diameter), often lacking clasts large enough for conventional paleomagnetic sampling. Here we demonstrate a method of consolidating and sampling oriented blocks of friable ash material with a strengthening compound. This method was used to show that a >25 km runout mass-flow deposit from the 2518-m-high Mt. Taranaki (New Zealand) was emplaced as a hot PDC, contrary to an earlier cold lahar interpretation. We corroborate the results from ash with data from clast samples at some sites and show that the matrix was emplaced at temperatures of at least 250 °C, while clasts were deposited at up to 410 °C. Our case-study raises concerns for hazard-identification at stratovolcanoes worldwide. In the Mt. Taranaki case we demonstrate that PDCs traveled >9 km farther than previously estimated—also well beyond the “normal” PDC hazard zones at stratovolcanoes (10 or 15 km from source). Thus, attention should be paid to deposits in the 15–25 km range in other volcanic settings, where large populations are potentially unaware of PDC risk.

Publisher

Geological Society of America

Subject

Geology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3