Basal erosion during the initiation of continental deep subduction in the North Qaidam ultrahigh-pressure metamorphic belt (NW China): Constraints from geochemistry and geochronology on eclogites and gneisses in the Chachahe unit

Author:

Ren Yunfei1,Chen Danling1,Zhu Xiaohui2,Wang Haijie1,Bai Bowen1

Affiliation:

1. 1State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi’an 710069, China

2. 2School of Petroleum Engineering and Environmental Engineering, Yan’an University, Yan’an 716000, China

Abstract

Subduction erosion is thought to be a common process in active continental margins that removes upper-plate material and transfers it to the subduction channel. The North Qaidam ultrahigh-pressure metamorphic belt of NW China was formed by subduction of the Qaidam Block beneath the Quanji Block in the early Paleozoic. In this study, we found gneisses and eclogites in the Chachahe unit of the North Qaidam ultrahigh-pressure metamorphic belt that recorded 2.39−2.28 Ga magmatism and 1.93−1.87 Ga amphibolite-facies metamorphism prior to the early Paleozoic (452−439 Ma) eclogite-facies metamorphism. The Paleoproterozoic tectono-thermal history recorded by these gneisses and eclogites is distinct from that of the Qaidam Block but similar to that of the Quanji Block. The rock assemblages, field occurrences, geochemical characteristics, and zircon Lu-Hf isotopic compositions of these rocks closely resemble those of gneisses and enclosed mafic enclaves in the Delingha Complex in the basement of the Quanji Block and the mafic dikes intruded within it. This evidence clearly illustrates that the protoliths of gneisses and eclogites in the Chachahe unit were from the basement of the upper Quanji Block rather than the subducted Qaidam Block. Further considering the spatial location of the Chachahe unit, as well as similarities in early Paleozoic metamorphic ages, peak metamorphic conditions, and clockwise P-T paths between rocks in the Chachahe unit and those that originated from the Qaidam Block, we propose that the bottom basement of the Quanji Block was scraped off by basal erosion during the initiation of continental subduction, transported to mantle depth, and then exhumed with other slices from the subducted slab.

Publisher

Geological Society of America

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3