Time-evolving surface and subsurface signatures of Quaternary volcanism in the Cascades arc

Author:

O’Hara Daniel1,Karlstrom Leif1,Ramsey David W.2

Affiliation:

1. Department of Earth Sciences, 1272 University of Oregon, Eugene, Oregon 97403, USA

2. U.S. Geological Survey, Cascades Volcano Observatory, 1300 SE Cardinal Court, Building 10, Suite 100, Vancouver, Washington 98683, USA

Abstract

Abstract Increased resolution of data constraining topography and crustal structures provides new quantitative ways to assess province-scale surface-subsurface connections beneath volcanoes. We used a database of mapped vents to extract edifices with known epoch ages from digital elevation models (DEMs) in the Cascades arc (western North America), deriving volumes that likely represent ∼50% of total Quaternary eruptive output. Edifice volumes and spatial vent density correlate with diverse geophysical data that fingerprint magmatic influence in the upper crust. Variations in subsurface structures consistent with volcanism are common beneath Quaternary vents throughout the arc, but they are more strongly associated with younger vents. Geophysical magmatic signatures increase in the central and southern Cascade Range (Cascades), where eruptive output is largest and vents are closely spaced. Vents and correlated crustal structures, as well as temporal transitions in the degree of spatially localized versus distributed eruptions, define centers with lateral extents of ∼100 km throughout the arc, suggesting a time-evolving spatial focusing of magma ascent.

Publisher

Geological Society of America

Subject

Geology

Reference33 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3