Older than they look: Cryptic recycled xenotime on detrital zircon

Author:

Dröllner Maximilian1ORCID,Barham Milo1ORCID,Kirkland Christopher L.1ORCID,Roberts Malcolm P.2

Affiliation:

1. 1Timescales of Mineral Systems Group, The Institute of Geoscience Research, School of Earth and Planetary Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia

2. 2Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA 6009, Australia

Abstract

Abstract Dating of xenotime outgrowths (XOs) has been used to obtain depositional age constraints on sedimentary sequences devoid of volcanic tuffs and biostratigraphically useful fossils (i.e., most of Earth history). Here, we present geochronological and geochemical data from XOs on detrital zircon from the Early Cretaceous Broome Sandstone, NW Australia. Ages of XOs predate the palynologically constrained deposition of the Broome Sandstone by at least 150 m.y., suggesting that these XOs were detrital and transported together with the zircon to which they are attached. This finding contrasts with the general assumption that XOs are principally authigenic phases. Integration of geochronology and geochemistry links Broome Sandstone XOs to intermediate geological events in the sediment source area. These results emphasize the importance of evaluating a potential detrital origin for XOs because sedimentary transport does not appear to universally destroy nor liberate them from their zircon substrate. Despite this, the study of XOs provides an important means to reconstruct complexities of source-to-sink sediment histories, including intermediate storage and overprinting, e.g., during diagenetic, metamorphic, hydrothermal, and igneous activity. Such information is critical for more holistic geological reconstructions but is not retained within the most applied provenance tool (detrital zircon).

Publisher

Geological Society of America

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3