An Efficient and Accurate Discovery of Frequent Patterns Using Improved WARM to Handle Large Web Log Data

Author:

Mary Sahaaya Arul1,Malarvizhi M.2

Affiliation:

1. Jayaram College of Engineering and Technology, Tiruchirappalli, Tamil Nadu, India

2. J.J. College of Engineering and Technology, Tamil Nadu, India

Abstract

In the booming era of Internet, web search is inevitable to everyone. In web search, mining frequent pattern is a challenging one, particularly when handling tera byte size databases. Finding solution for these issues have primarily started attracting the key researchers. Due to high the demand in finding the best search methods, it is very important and interesting to predict the user's next request. The number of frequent item sets and the database scanning time should be reduced for fast generating frequent pattern mining. It fulfills user's accurate need in a magic of time and offers a customized navigation. Association Rule mining plays key role in discovering associated web pages and many researchers are using Apriori algorithm with binary representation in this area. But it does not provide best solution for finding navigation order of web pages. To overcome this, weighted Apriori was introduced. But still, it is difficult to produce most favorable results especially in large databases. In the effort of finding best solution, the authors have proposed a novel approach which combines weighted Apriori and dynamic programming. The conducted experiments so far, shows' better tracking of maintaining navigation order and gives the confidence of making the best possible results. The proposed approach enriches the web site effectiveness, raises the knowledge in surfing, ensures prediction accuracies and achieves less complexity in computing with very large databases.

Publisher

IGI Global

Subject

General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Semi-Automatic Annotation Method of Effect Clue Words for Chinese Patents Based on Co-Training;International Journal of Data Warehousing and Mining;2018-10

2. An improved SMURF scheme for cleaning RFID data;International Journal of Grid and Utility Computing;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3