Affiliation:
1. College of Engineering, Huazhong Agricultural University, Wuhan, China
Abstract
Visual navigation is one of the fundamental techniques of intelligent cotton-picking robot. Cotton field composition is complex and the presence of occlusion and illumination makes it hard to accurately identify furrows so as to extract the navigation line. In this paper, a new field navigation path extraction method based on horizontal spline segmentation is presented. Firstly, the color image in RGB color space is pre-processed by the OTSU threshold algorithm to segment the binary image of the furrow. The cotton field image components are divided into four categories: furrow (ingredients include land, wilted leaves, etc.), cotton fiber, other organs of cotton and the outside area or obstructions. By using the significant differences in hue and value of the HSV model, the authors segment the threshold by two steps. Firstly, they segment cotton wool in the S channel, and then segment the furrow in the V channel in the area outside the cotton wool area. In addition, morphological processing is needed to filter out small noise area. Secondly, the horizontal spline is used to segment the binary image. The authors detect the connected domains in the horizontal splines, and merger the isolate small areas caused by the cotton wool or light spots in the nearby big connected domains so as to get connected domain of the furrow. Thirdly, they make the center of the bottom of the image as the starting point, and successively select the candidate point from the midpoint of the connected domain, according to the principle that the distance between adjacent navigation line candidate is smaller. Finally, the authors count the number of the connected domains and calculate the change of parameters of boundary line of the connected domain to make sure whether the robot reaches the outside of the field or encounters obstacles. If there is no anomaly, the navigation path is fitted by the navigation points using the least squares method. Experiments prove that this method is accurate and effective, which is suitable for visual navigation in the complex environment of a cotton field in different phases.
Reference21 articles.
1. Machine Vision-based Guidance System for Agricultural Grain Harvesters using Cut-edge Detection
2. Current Situation of Navigation Technologies for Agricultural Machinery;J.Changying;Transactions of the Chinese Society for Agricultural Machinery,2014
3. Walking goal line detection based on improved Hough transform on harvesting robot;W.Gang;Transactions of the Chinese Society for Agricultural Machinery,2010
4. Parametric Model of the Perspective Projection of a Road with Applications to Lane Keeping and 3D Road Reconstruction
5. Image Detection Method of NavigationRoute of Cotton Plastic Film Mulch Planter;L.Jingbin;Journal of Chinese Agricultural Mechanization,2014
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献