Affiliation:
1. The University of Jordan, Amman, Jordan
2. The University of Liverpool, Liverpool, UK
Abstract
This paper presents a new clinical decision support system for diagnosing patients with Chronic Renal Failure (CRF) which is not yet thoroughly explored in literature. This paper aims at improving performance of a previously reported CRF diagnosis system which was based on Artificial Neural Network (ANN), Decision Tree (DT) and Naïve Bayes (NB) classifying algorithms. This is achieved by utilizing more efficient data mining classifiers, Support Vector Machine (SVM) and Logistic Regression (LR), in order to: (i) diagnose patients with CRF and (ii) determine the rate at which the disease is progressing. A clinical dataset of more than 100 instances is used in this study. Performance of the developed decision support system is assessed in terms of diagnostic accuracy, sensitivity, specificity and decisions made by consultant specialist physicians. The open source Waikato Environment for Knowledge Analysis library is used in this study to build and evaluate performance of the developed data mining classifiers. The obtained results showed SVM to be the most accurate (93.14%) when compared to LR as well as other classifiers reported in the previous study. A complete system prototype has been developed and tested successfully with the aid of NHS collaborators to support both diagnosis and long-term management of the disease.
Reference33 articles.
1. Clinical decision support system for diagnosis and management of Chronic Renal Failure
2. Mobile‐based interpreter of arterial blood gases using knowledge‐based expert system
3. Application of data mining techniques for medical image classification.;M. L.Antonie;Proceedings of the Second International Workshop on Multimedia Data Mining, in conjunction with ACM SIGKDD conference,2001
4. Data Mining Techniques: To Predict and Resolve Breast Cancer Survivability.;V.Chaurasia;International Journal of Computer Science and Mobile Computing,2014
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献