A Novel Approach to Build a Generic Model of Photovoltaic Solar System Using Sound Biometric Techniques

Author:

Al-Sarayreh Khalid T.1,Meridji Kenza2,Fayyoumi Ebaa3,Idwan Sahar3

Affiliation:

1. Department of Software Engineering, Hashemite University, Zarqa, Jordan

2. Department of Software Engineering, Petra University, Amman, Jordan

3. Department Computer Science and Applications, Hashemite University, Zarqa, Jordan

Abstract

This chapter presents the proposed model of combination between Photovoltaic solar system resources and sound biometric techniques, to generate power energy from the sunlight using the PVS controlled by a sound biometric technique. This work contributes to research knowledge by proposing and validating a sound biometric technique for allowing to reduce the consumption of the generated power energy by turn the lights on for the public roads only when there are vehicles on the way and only for some period of time to make the driving out of harm's way and trouble-free. The proposed and combination models between the PVS and biometric sound chip is used for generating electric power by using solar cells to convert energy from the sun light into a flow of direct current electricity, which can be used to power equipment or to recharge a battery. In addition the Sound biometric techniques can enable PVS to listen and understand their surrounding auditory environment since turning the lights on all the time will get through a lot of energy which it might be used in other significant concerns.

Publisher

IGI Global

Subject

General Computer Science

Reference19 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3