Affiliation:
1. North Minzu University, China
Abstract
As to the problems of low data mining efficiency, less dimensionality, and low accuracy of traditional multidimensional association rules in the university big data environment, an OLAP-based multi-dimensional association rule mining method is proposed, which combines hash function and marked transaction compression technology to solve the problem of excessive or redundant candidate sets in the Apriori algorithm, and uses On Line Analytical Processing to manage the intermediate data in the association mining process , in order to reduce the time overhead caused by repeated calculations. To verify the validity of the proposed method, a learning situation analysis system is constructed in the field of colleges and universities. The multi-dimensional association rules mining method is used to analyze more than 21,000 desensitized real data, in order to mine the key factors affecting students' academic performance. The experimental results show that the proposed multi-dimensional mining model has good mining results and significantly improves the time performance.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献