FaD-CODS Fake News Detection on COVID-19 Using Description Logics and Semantic Reasoning

Author:

Goel Kartik1,Gupta Charu1,Rawal Ria2,Agrawal Prateek3ORCID,Madaan Vishu3

Affiliation:

1. Bhagwan Parshuram Institute of Technology, India

2. Bhagwan Parshuram Institute of Techology, India

3. Lovely Professional University, India

Abstract

COVID-19 has affected people in nearly 180 countries worldwide. This paper presents a novel and improved Semantic Web-based approach for implementing the disease pattern of COVID-19. Semantics gives meaning to words and defines the purpose of words in a sentence. Previous ontology approaches revolved around syntactic methods. In this paper, semantics gives due priority to understand the nature and meaning of the underlying text. The proposed approach, FaD-CODS, focuses on a specific application of fake news detection. The formal definition is given by depiction of knowledge patterns using semantic reasoning. The proposed approach based on fake news detection uses description logic for semantic reasoning. FaD-CODS will affect decision making in medicine and healthcare. Further, the state-of-the-art method performs best for semantic text incorporated in the model. FaD-CODS used a reasoning tool, RACER, to check the consistency of the collected study. Further, the reasoning tool performance is critically analyzed to determine the conflicts between a myth and fact.

Publisher

IGI Global

Subject

General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3