Integrating Star and Snowflake Schemas in Data Warehouses

Author:

Garani Georgia1,Helmer Sven2

Affiliation:

1. Department of Computer Science and Telecommunications, Technological Educational Institute of Larisa, Greece

2. Faculty of Computer Science, Free University of Bozen-Bolzano, Bolzano, Italy

Abstract

A fundamental issue encountered by the research community of data warehouses (DWs) is the modeling of data. In this paper, a new design is proposed, named the starnest schema, for the logical modeling of DWs. Using nested methodology, data semantics can be explicitly represented. Part of the design involves providing a translation mechanism from the star/snowflake schemas to a nested representation. The novel schema proposed in this paper is accomplished by converting the fact-dimension schema to a fact-nested dimension schema. The transformation of the denormalized dimension tables to nested dimension tables increases the efficiency of query execution by reducing the number of tuples accessed for query retrieval since dimensional attributes can be used directly in the Group-by clause. In order to facilitate the implementation of the proposed approach, specific algorithms are built based on the starnest schema.

Publisher

IGI Global

Subject

Hardware and Architecture,Software

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Incorporating Data Warehouses into Data Pipelines for Deploying Learning Analytics Dashboards;2023 14th International Conference on Information, Intelligence, Systems & Applications (IISA);2023-07-10

2. Data pipelines for educational data mining in distance education;Interactive Learning Environments;2023-01-01

3. Healthcare data security and privacy in Data Warehouse architectures;Informatics in Medicine Unlocked;2023

4. A novel approach for handling semantic trajectories on data warehouses;Intelligent Decision Technologies;2022-12-20

5. Meteorological Data Warehousing and Analysis for Supporting Air Navigation;Informatics;2022-10-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3