Mining Integrated Sequential Patterns From Multiple Databases

Author:

Ezeife Christie I.1,Aravindan Vignesh2,Chaturvedi Ritu3

Affiliation:

1. University of Windsor, Ontario, Canada

2. Royal Bank of Canada, Canada

3. School of Computer Science, University of Guelph, Ontario, Canada

Abstract

Existing work on multiple databases (MDBs) sequential pattern mining cannot mine frequent sequences to answer exact and historical queries from MDBs having different table structures. This article proposes the transaction id frequent sequence pattern (TidFSeq) algorithm to handle the difficult problem of mining frequent sequences from diverse MDBs. The TidFSeq algorithm transforms candidate 1-sequences to get transaction subsequences where candidate 1-sequences occurred as (1-sequence, itssubsequenceidlist) tuple or (1-sequence, position id list). Subsequent frequent i-sequences are computed using the counts of the sequence ids in each candidate i-sequence position id list tuples. An extended version of the general sequential pattern (GSP)-like candidate generates and a frequency count approach is used for computing supports of itemset (I-step) and separate (S-step) sequences without repeated database scans but with transaction ids. Generated patterns answer complex queries from MDBs. The TidFSeq algorithm has a faster processing time than existing algorithms.

Publisher

IGI Global

Subject

Hardware and Architecture,Software

Reference23 articles.

1. Clustering local frequency items in multiple databases

2. Fast algorithms for mining association rules in large databases.;R.Agrawal;Proceedings of the 20th International Conference on very Large Databases,1994

3. Aravindan, V. (2016). Mining frequent sequential patterns from MDBs using transaction Ids [MSc thesis]. University of Windsor, Canada.

4. Sequential PAttern mining using a bitmap representation

5. Mining Web Log Sequential Patterns with Position Coded Pre-Order Linked WAP-Tree

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3