Image Classification of Crop Diseases and Pests Based on Deep Learning and Fuzzy System

Author:

Fan Tongke1,Xu Jing1

Affiliation:

1. Xi'an International University, Xi'an, China

Abstract

The automatic classification of crop disease images has important value. The classification algorithm based on manual feature extraction has some problems, such as the need for professional knowledge, is time-consuming and laborious, and has difficulty extracting high-quality features. In this article, the theory of the fuzzy system is discussed. The theory of the fuzzy system is applied to the pretreatment of blurred images. A local blurred image deblurring method based on depth learning is proposed. By training convolutional neural network models with different structures, the image of diseases and insect pests is segmented using normalized segmentation algorithms based on spectral graph theory, and the segmentation knot of leaf diseases is obtained. Finally, the optimal network structure is obtained by comparing the segmentation results with the traditional machine learning algorithm. Experiments show that the segmentation results of pests and diseases obtained by this algorithm have better robustness, generalization, and higher accuracy.

Publisher

IGI Global

Subject

Hardware and Architecture,Software

Reference25 articles.

1. Discrimination of the initial stage of citrus canker disease by self-organizing artificial neural network model.;Y.Cai;Journal of Plant Pathology,1995

2. Recognition of cucumber anthracnose and brown spot based on color image statistical characteristics.;Z.Cen;Journal of Horticulture,2007

3. High speech intelligibility evaluation method based on RMS frequency division.;G.Fei;Computer Engineering and Applications,2018

4. A review of content-based image segmentation methods.;J.Feng;Journal of Software,2017

5. A Fast Learning Algorithm for Deep Belief Nets

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3