Cognitive Modeling of Learning Using Big Data From a Science-Based Game Development Environment

Author:

Annetta Leonard1ORCID,Lamb Richard2ORCID,Bressler Denise M.2ORCID,Vallett David B.3

Affiliation:

1. East Carolina University, Greenville, USA

2. East Carolina University, USA

3. Quebec Quantitative Qualitative Research and Evaluation, Canada

Abstract

The purpose of this study was to identify the underlying cognitive attributes used during the design and development of science-based serious educational games. Study methods rely on a modification of cognitive diagnostics, item response theory, and Bayesian estimation with traditional statistical techniques such as factor analysis and model fit analysis to examine the data and model structure. A computational model of the cognitive processing using an artificial neural network (ANN) allowed for examination of underlying mechanisms of cognition from a server-side data set and a 21st century skills assessment. ANN results indicate that the model correctly predicts successful completion of science-based serious educational game (SEG) design tasks related to 21st century skills 86% of the time and correctly predicts failure to complete SEG design tasks related to 21st century skills 78% of the time. The model also reveals the relative importance of each particular cognitive attribute within the 21st century skills framework.

Publisher

IGI Global

Subject

Developmental and Educational Psychology,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3