Affiliation:
1. City, University of London, UK
Abstract
Heterogeneous data types, widely distributed data sources, huge data volumes, and large-scale business-alliance partners describe typical global supply chain operational environments. Mobile and wireless technologies are putting an extra layer of data source in this technology-enriched supply chain operation. This environment also needs to provide access to data anywhere, anytime to its end-users. This new type of data set originating from the global retail supply chain is commonly known as big data because of its huge volume, resulting from the velocity with which it arrives in the global retail business environment. Such environments empower and necessitate decision makers to act or react quicker to all decision tasks. Academics and practitioners are researching and building the next generation of big-data-based application software systems. This new generation of software applications is based on complex data analysis algorithms (i.e., on data that does not adhere to standard relational data models). The traditional software testing methods are insufficient for big-data-based applications. Testing big-data-based applications is one of the biggest challenges faced by modern software design and development communities because of lack of knowledge on what to test and how much data to test. Big-data-based applications developers have been facing a daunting task in defining the best strategies for structured and unstructured data validation, setting up an optimal test environment, and working with non-relational databases testing approaches. This chapter focuses on big-data-based software testing and quality-assurance-related issues in the context of Hadoop, an open source framework. It includes discussion about several challenges with respect to massively parallel data generation from multiple sources, testing methods for validation of pre-Hadoop processing, software application quality factors, and some of the software testing mechanisms for this new breed of applications
Reference57 articles.
1. Information manufacturing: The road to database quality;S. E.Arnold;Database,1992
2. Modeling Data and Process Quality in Multi-Input, Multi-Output Information Systems
3. Modeling Information Manufacturing Systems to Determine Information Product Quality
4. Methodologies for data quality assessment and improvement;C.Battani;Association for Computing Machinery Computing Surveys,2009