VLSI Implementation of Neural Systems

Author:

Nagarajan Ashok Kumar1ORCID,Thandapani Kavitha2,Neelima K. 1,Bharathi M. 1,Srinivasan Dhamodharan3,Selvaperumal SathishKumar4

Affiliation:

1. Mohan Babu University, India

2. VelTech Rangarajan Dr. Sagunthala R&D Institute of Science and Technolog, India

3. Sri Eshwar College of Engineering, India

4. Asia Pacific University of Technology and Innovation, Malaysia

Abstract

A unique strategy for optimum multi-objective optimization for VLSI implementation of artificial neural network (ANN) is proposed. This strategy is efficient in terms of area, power, and speed, and it has a good degree of accuracy and dynamic range. The goal of this research is to find the sweet spot where area, speed, and power may all be optimised in a very large-scale integration (VLSI) implementation of a neural network (NN). The design should also allow for the dynamic reconfiguration of weight, and it should be very precise. The authors also use a 65-nm CMOS fabrication method to produce the circuits, and these results show that the suggested integral stochastic design may reduce energy consumption by up to 21% compared to the binary radix implementation, without sacrificing accuracy.

Publisher

IGI Global

Reference23 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3